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Abstract 
The last decade has brought many answers to questions concerning bowed-string onsets and how tone color is 
controlled by the player. Also, new friction models have emerged, models that relate friction coefficients to contact 
temperature rather than to the relative velocity. This implies both starting transients and timbre to be considerably 
more influenced by the properties of the rosin than was earlier presumed. The present paper reviews recent findings 
in these fields.  
Key words: Bowed string, Music transient. 
 
Control of tone color during steady state 
The four most basic parameters used by the player to control the tone color of a bowed instrument are 
 

(1) bowing “pressure” (i.e., the bow’s force, normal to the string) 
(2) bowing speed 
(3) bowing position on the string 
(4) tilting of the bow hair ribbon with respect to the string.  

 
It has earlier been shown that the parameter “bowing pressure” (1) influences the spectral envelope by 
sharpening the Helmholtz corner each time it passes the bow1. What has not been equally clear is whether 
this sharpening is related to the absolute, or relative bow force, the latter with respect to the area between 
the upper and lower limits for maintaining the Helmholtz motion with a given bow speed. These limits are 
outlining a wedge in the Schelleng diagram2, where bowing position constitutes the abscissa. (See Figure 
1.)  The bow force limits in Schelleng’s diagram are based on the following two equations: 

 
 

(1) 
 
 
 
 
 
 
 

The rounding of the Helmholtz corner originates from bending stiffness, and internal and external losses 
with respect to the string, and cannot be derived from the equations above. However, the present paper 
suggests that tone color can be related to bow force relative to these limits. Higher partials are being 
emphasized when the relative bow force is increased. It follows that bow speed alone can influence timbre 
(lowering the speed emphasizes the higher partials), which has recently been proved empirically3. Figure 
2 is a 3D version of Figure 1, introducing speed as the 3rd independent variable. 
 
What is not immediately evident from Schelleng’s diagram, is whether the bow’s position (3), does carry 
any potential for changing the spectral envelope or roll-of frequency or not. However, the only spectral 
effect seen when changing the bowing position concerns the so-called “node frequencies”, or frequencies 
close to those. This may appear surprising, since in pizzicato the spectral envelope is indeed influenced by 
the excitation point, and most string players have “experienced” that “changing bowing position changes 
the tone color” in a similar fashion. On the other hand, players have hardly done so while keeping 



parameters (1) and (2) constant, since that would quickly have brought them off the Helmholtz-mode 
regime. Figure 1 is based on the Schelleng diagram, but shaded in order to indicate that tone color gets 
brighter with increasing force rather than diminishing distance to the bridge. 
 
 

Figure 1: The Schelleng diagram (from JASA
1973). As function of relative bowing position, β,
the wedge shows the bow force that will maintain
Helmholtz motion for a given bow speed. The
shaded sections, introduced by the present author,
indicate three different tone-color characteristics:
brilliant, neutral, and “sul tasto” (soft). These
appear to be independent of bowing position. 

 
 
 
 
 
 

Figure 2: 3D version of
Schelleng’s diagram. The bow
speed is now included.
Lowering the bow speed while
keeping other variables fixed,
causes the tone color to become
more sharp/brilliant. 

 
 

 
Figure 3: The Helmholtz motion of a bowed string.
While oscillating in Helmholtz motion, the string
generally describes two straight lines joined in a
sharp rotating corner. During most of the period, the
string follows the bow completely. The slip takes
place when the corner is on the bridge side of the
bow. The sharpness/rounding of the corner
determines the sharpness/softness of the tone color. 

 
 
 
 
 
 
 
 
 

 
 
 

Figure 4: Pizzicato
makes spectral lobes with
widths dependent on the
position of excitation. A
wide first lobe hence
causes the tone color to
become more brilliant
when plucking the string
close to one of its ends.



 
When bowing a string in steady-state Helmholtz motion, the force acting on the bridge is principally 
describing a sawtooth wave, composed of a ramp, and a vertical edge that occurs every time the 
rotating Helmholtz corner is reflected at the bridge. The spectral slope of such a wave is −6 dB per 
octave. Had the bow been exciting the string at a point irrational to the total string length, the ramp 
would have been perfectly smooth. In practice the ramp is made up of a number of steps, the actual 
number depending on the bow’s position. Spectrally, such steps cause certain partials to be weakened 
or suppressed. In the case of pizzicato, the force acting on the bridge describes a train of square pulses, 
the widths of which are determined by the time required for a string wave to propagate from the point 
of excitation to the bridge and back again. Also this waveform has a spectral slope of −6 dB/oct. 
However, unlike when the string is bowed, in pizzicato the spectrum also consists of lobes after the 
formula: amplitude of harmonic n ∝ sin(nπβ)/nπβ.This implies that when plucked near one of its ends  
the string will produce a wide first lobe with a number of partials holding amplitudes close to unity 
(see Figure 4). The tone will sound bright. 
 
The brilliance or tone brightness of the bowed string can only be modified through shaping of the 
Helmholtz corner. When the string slips on the bow hair, a transitional interval occurs, where the 
relative speed between the bow and the string gradually reaches a maximum. A similar, but reversed 
situation occurs when the string is captured (see Figure 5). Had the transition been instantaneous, the 
Helmholtz corner would have been perfectly sharp, and the spectrum would display no roll-off 
frequency at the high end. In practice losses and bending stiffness round off the corner, while the bow, 
on the other hand, sharpens it every time it passes. The (relative) force determines how much. 
 
The sharpness of this corner is for any practical measures independent of β, that is, independent of the 
time interval between release and capture. In the force signal, the string’s accelerations at release and 
capture cannot be distinguished, as they are two sides of the same coin. When β changes, one can, 
however, see local variations in the (normalized) spectrum—particularly around the “node 
frequencies”, i.e., frequencies in the neighborhood of f = nf0/β,  where f0 = the fundamental frequency, 
and n = 1, 2, 3, etc—but no tendency towards brighter or softer tone color in general. See Figure 6, 
resulting from six simulations of a violin G-string.  
 
 

 
Figure 5: Schematic plots of the
string’s velocity during the slip
phase with two different bowing
positions. Spectrum is determined
by the relative acceleration at
release and capture—not the time
interval between these two steps.
The force spectrum at the bridge is
without lobes. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 6: Simulated force spectra of violin G-
string bowed at six different positions while
keeping other bowing parameters fixed. In spite
of local excursions around the “node
frequencies” there is no trend towards greater
brilliance as the relative bowing position (β) gets
smaller. 



An experiment was recently set up for the verification of bow speed as controlling parameter for tone 
color3. Here a bowing machine was used for controlling the bowing parameters. The result can be seen 
in Figure 7: 
 
 
 
 
 

Figure 7: Spectra of an open violin D-string
bowed with three different velocities
(normalized to the amplitude of the 1st

harmonic). As the velocity decreases, the
relative energy of high partials increases. 

 
 
 
 
 
 
 
 
When normalizing the amplitudes to zero dB for the first harmonic, a reduction of the speed from 10 
to 3 cm/s gave an average increase of 5.2 dB for harmonics 16 to 65. It is particularly when the upper 
bow force limit is approached (by lowering the bow speed—see Eq. 1) that such a spectral change 
takes place. The spectral difference between bow speeds of 30 and 10 cm/s produced only an average 
difference of 0.2 dB for the same range of harmonics. The underlying physics for these changes in 
tone color can be traced back to simple stability requirements. Regard Figure 8, which describes 
“ideal” Helmholtz conditions with a simple friction model: In steady state, for a given β, bow speed,  
and bow force, the friction will alternate between Qs (quiescence during stick) and Qd (quiescence 
during slip). Over one period (T0), these two conditions will occupy T0(1−β), and T0β, respectively. 
Disregarding all losses, Qs and Qd  must be balanced to the same force level if the string shall be 
driven in steady state and no net amount of work shall be done in the course of a period4. The interval 
between Qd and Qs projected onto the abscissa is equal to vB/β. If we reduce the bow speed, vB, this 
distance becomes smaller, which implies that Qd and Qs have to move up to higher force values in 
order to maintain alignment while still being placed on the friction curve (see Qd’ and Qs’ of Figure 
8). This increase in friction force seems to be the main reason why the Helmholtz corner gets more 
sharpened and the tone brighter when the bow speed is reduced, also for more realistic friction models. 
(Figure 2 of the paper “Applications of the Bluestein filter…”, printed elsewhere in these proceedings, 
gives an example of velocity measurements of a violin D-string bowed with different bow speeds.)  
 

 
 

Figure 8: Friction curve and stability
requirements under simplified Helmholtz
conditions. During stick, the relative speed
between bow and string is zero, while it is
vB/β during slip. In both cases the friction
must take the same force value in order not to
generate net work over the steady-state
period. This implies that the friction force
must increase as vB—and thus the interval
between Qd and Qs—becomes smaller. 

 
 
 
 
 
  
 
 
 
 

 
The effect of bow-hair tilting has been a theme of discussion among string players. While all violinists 
and violists normally play with the bow-hair ribbon tilted with respect to the string, some cellists and 
even more double bassists play with the hair flat (usually with the conviction that “it provides better 
friction”). On a violin, the full width of the bow hair (ca 8 mm) occupy at least  2.4% of the string 
length when put flat on, while on the double bass the comparable figure is about one half of that. It is 
not difficult to imagine that some short-wavelength filtering effect might take place. The exact  



 
 

Figure 9: Effect of
bow-hair tilting on the
string spectrum (after
Schoonderwaldt et al.
2003). 

 
 

 
mechanism has yet to be revealed, however, but it has been confirmed that reducing the width of the 
touching bow-hair ribbon in fact does encourage higher partials, and bow-hair tilting even more so 
(particularly when bowed near the bridge), although the audible effects are moderate5.  
 
Based on the information discussed above and confirming simulations, it is possible to present the 
following table, which gives a general overview. 
 

Table 1: Overview over steady-state spectral effects when changing one bowing parameter (only): 
 

Parameter value increased: Effect on tone color (spectral profile): 
Bow force (“bow pressure”) Increased sharpness/brilliance 
Bow speed Decreased sharpness/brilliance 
Relative bowing position (β) Only local deviations – No general tendency 
Tilting of bow-hair ribbon with respect to the 
string (only if tilted the correct way, i.e., 
toward the fingerboard). 

Increased sharpness/brilliance (moderate 
effect only) 

Width of bow-hair ribbon Decreased sharpness/brilliance (moderate 
effect only) 

Length of string  
(with constant stiffness, and impedance— but 
the fundamental frequency decreasing) 

Increased sharpness/brilliance (relative to the 
fundamental frequency) 

*Wave resistance (mass and tension) of the 
string 
[i.e., Z = √(Tδ), where T = tension, and δ = 
mass per unit length] while keeping the 
tuning fixed, i.e., holding  T/δ constant. 

Decreased sharpness/brilliance 
[Although:  increased wave resistance permits 
a higher limiting bow force—see Eq. (1)—
which gives comparatively higher sharpness/ 
brilliance when the string’s bending stiffness 
is kept unaltered.] 

*Loss at string terminations Decreased sharpness/brilliance 
(notice from Eq. 1 that reducing R increases 
Fmax, and thus decreases the relative bow 
force) 

*Bending stiffness of string Decreased sharpness/brilliance 
It also increases chances for “pitch 
flattening”. When playing a thick string in 
high positions, the relative bending stiffness 
increases due to the greater proportion of 
corner rounding. 

*Softness of rosin Increased sharpness/brilliance 
(giving the an effect comparable to increased 
bow force). “Pitch flattening” may increase.  

       * These parameters are not normally subjected to changes during a performance, but are 
listed here for completeness.  



The onset transient—creation of the Helmholtz motion 
During the “attack” (or “tone onset” as one might prefer to label it) the rotating Helmholtz corner has 
to be constructed. This presupposes a gradual buildup of waves on each side of the bow. Figure 10 
shows this principle of development: During the onset transient the high impedance bow pretty much 
acts like an isolator between waves rotating on either side. For a bow moving upwards the task is to 
produce waves that return from the bridge and nut with descending and ascending steps, respectively 
(see “steady state”, lower panel in Figure 10). On the bridge side, descending steps will come naturally 
as reflections of the first slip. On the nut side, reflection of the first slip will arrive at a time T0(1−β) 
after the first release, then again at the time 2T0(1−β), etc. In order to develop ascending steps, 
reflections of the first release must be smaller in amplitude than that of the second release, and so on. 
This could either happen through acceleration of the bow (the flyback velocity increasing), or through 
losses at the reflection points, causing pulses to fade at each reflection. In practice the latter would 
only be sufficient if β is small so that many reflections take place before the sequence repeats itself. 
 

  
Figure 10: Wave buildup during a bowed tone onset (simulated). The reflection pattern is different on each side
of the bow (see lower left panel). While the waves returning to the bow from the bridge obtain a correct pattern
directly after the first slip (compare to the steady-state situation, where descending steps are seen), the waves on
the nut side require a gradual circular overlap to achieve the correct Helmholtz pattern of ascending steps in
steady state. 
 

Figure 11: Friction force during an attack
with regular stick/slip triggering from the
start—the bow given a constant
acceleration. There are four crucial points
of time, where friction force must stay
below (A and D), or surpass (B and C) the
limiting static friction force in order to
develop triggering regularity.  
 
 



In the case of the (constantly) accelerating bow, there are four obstacles that potentially could destroy 
regular stick/slip triggering to follow the first slip (labeled A through D in Figure 11). If accelerating 
to much, the peak at A [situated at the time T0(1−β) after the first release] would cause a premature 
slip. At B [situated at the time T0 after the first release] the returning waves must oppose the bow’s 
movement enough to cause a slip, i.e., the bow velocity minus the sum of all returning waves, times 
the impulse impedance of the string surface, (short dashes in Figure 11) must surpass the limiting 
static friction force. This requires acceleration to be above a certain value. The same is true at C 
[situated at a time near T0(1/β −1) after the first release]. Had the bow been starting with a constant 
speed “switched on”, the string would only have been released at this point if β  was small. If not, the 
pulse originating at the first slip would not have been sufficiently reduced to avoid canceling of release 
here (see reduction of flyback velocity at the 6th

, and force at the 12th  slip of Figures 10 and 11, 
respectively). If the bow starts with acceleration, however, a fourth obstruction will be present as a 
force peak at the time near T0(1−β)/(3β) after the first release (labeled D in Figure 11). Similar to the 
peak at A, this peak could easily cause a premature slip. 
 
When using a simple resistive bowed-string model like Raman6 and Schelleng did, it is possible to 
calculate the range of accelerations that will provide regular stick/slip triggering7. For small β the 
peaks at B and D restrict the range of “successful” accelerations more than the ones at A and C. For 
large β, peaks at A and C would be representing the limiting factors. For more complicated string 
models this pattern can be recognized, although probably not possible to calculate. 
 
Figure 12 shows a set of 33000 simulations using more realistic string and friction models. Each pixel 
represents a unique combination of the bowing parameters acceleration and force. The color of the 
pixel indicates the number of nominal periods elapsing before Helmholtz triggering occurs. The string 
simulated is a high-gauge violin G-string (with torsion, quasi-plastic friction model, etc., described in 
ref7).  The  area labeled (1) represents prolonged periods (“failing” at B or C), which gives a “choked” or 
“creaky” sound. Area (2) indicates “perfect attacks” (i.e., periodic triggering from the start), while (3) 
represents multiple slips (“failing” at A or D), implying a “loose” or “scratchy” transient sound. 
 
 

 
Figure 12: Simulations of bowed-string
attacks. Each pixel represents a unique
combination of (constant) bow
acceleration and force. The labeled areas
represent, respectively: (1) “choked” or
“creaky”, (2) “clean” or “perfect”, and (3)
“loose” or “scratchy” attacks In a musical
context, all these are utilized, although
“clean attacks”  by far most often.  

 
 

 
The creation of the Helmholtz motion has through listening tests been subjected to study in terms of 
musical preference8. For violin onsets to be judged as “acceptable” in a musically neutral context, no 
more than 90 milliseconds should elapse before establishing the Helmholtz slip/stick pattern when 
extra string slips are present (the sound being “loose/scratchy”), and no more than 50 ms when 
slipping intervals are longer than the nominal fundamental period (the sound being “choked/creaky”). 
As we see from Figure 12, these effects take place when the bow’s initial acceleration is too small or 
high for the given bow force, respectively. In this study two professional violinists played excerpts of 
musical pieces of different character while the string movement was recorded and later analyzed. The 
musicians were not aware of the purpose of the test. It turned out that more than 50% of a body of 
1694 attacks could be categorized as “perfect”, while musical style to a large degree determined 



whether the remaining part would fall into category (1) or (3). Taken into consideration that the 
requirements of bow acceleration vary with: frequency, string properties, β, and dynamics—so that 
each tone played has to be given individual bowing parameters—it is quite impressive how well 
accomplished players master this challenge. 
 
Figure 13 shows spectrograms of the three categories of bowed attacks. The recordings were done 
with a special electret microphone inside the violin, with a bowing machine producing attacks on the 
open G-string (G3 at 196 Hz). This special arrangement favors to some degree the fundamental, which 
would otherwise be poorly radiated due to the small size of the violin. Some quite characteristic 
features are seen in each panel. The “creaky/choked” signal starts with a single string-flyback snap, 
which is unrealistic for classical playing, but interesting from the point of view that it emphasizes 
natural resonances of the instrument. After that, the actual tone building starts, slowly emerging from 
massive noise. The player can relatively easily determine the swiftness with which this transition takes 
place, which makes such onsets suitable for loud harsh, or percussive attacks, etc. Characteristic of the 
“perfect” signal is that all partials, including the fundamental frequency, are immediately apparent. 
Well-performed bow changes show comparable features. The noise seen here, is mostly sliding noise 
during the (regular) slipping intervals. The spectrum of this noise is to a large extend reflecting the 
resonance profile of the instrument, which will be audible for most tones played. One other typical 
attribute is a slight (mostly inaudible) pitch flattening during the initial part of the attack. The 
“loose/scratchy” signal shows in the present recording two slipping intervals per nominal period for 
about 350 ms. Twin slips oppose generation of the fundamental frequency and some other partials, 
dependent on the time interval between them. Extra slips naturally produce extra noise, which can be 
noticed in the spectrogram. This kind of attack is often used for “dreamy” or “transparent” musical 
characterization. 
 

Figure 13: Spectrograms of three violin attacks. Notice the prevailing noise present in the left panel
(creaky/choked). The middle panel (“perfect”) gives the cleanest spectrum, with quick buildup of all partials,
including the first harmonic (F0). In the right panel (loose/scratchy) the string slips twice per nominal period for
about 350 ms, and the buildup of partials is comparatively slow and deficient. In both the rightmost and the
leftmost panels F0 appears only after a substantial delay. The stochastic energy in the frequency range 250-550,
and around 2400 Hz, present in all panels, reflects normal slipping noise emphasized by major resonances of the
instrument.  
 
To sum up: through acceleration the player has a tool for coloring the bowed attack without substantially 
changing the dynamics. This technique, however, is only part of the player’s palette, since many bow 
strokes are started with the bow “off the string”, either approaching the string slowly (for gentle attacks) 
or quickly (for spiccato or ricochet, with the bow bouncing on and off the string). In the first case, 
multiple slips will usually take place, but, to some extend be masked by a rapidly developing Helmholtz 
triggering. Because double or multiple slips usually fade out as function of frequency and damping, 



“loose/scratchy” attacks tend to last more shortly on high-pitched instruments. For this reason cellists and 
double bass players usually start their bow strokes nearer to the string, even for gentle attacks. Bouncing-
bow techniques can produce clean (“perfect”) attacks, as has been shown by Guettler and Askenfelt9,10, 
but this requires precision and quality both of the player and the bow itself. In general, string players 
consciously select the starting points on the bow-hair ribbon to shape the attack in accordance with the 
musical demands, taking advantage of bow’s dynamic properties for controlling the bow force 
envelope. Differences in tone color between up bow and down bow has been claimed, but never 
convincingly documented. 
 

New friction models—impact on tone color 
Traditionally, two friction models have dominated earlier discussions on the bowed string: the exponential 
and the hyperbolic friction-coefficient curves, both functions of the relative velocity between the bow hair 
and the string’s surface. Their respective equations can be given the following forms: 
 
 
 (2)

(3)

 and 
 
 

 
 
 
While Eq.(2) gives the most precise fit for (empiric) steady-state sliding, Eq.(3) has the advantage that 
in bowed-string simulation it can be solved directly when V without friction is known, which implies 
faster computation. However, experiments carried out by Smith and Woodhouse11 suggest that 
temperature rather than relative velocity determines the friction coefficient. Their “plastic-friction 
model” can be expressed as: 
 
   (4)
 
 
 
 
 
This expression, in which the shear yield stress is related to dissipation, temperature flux, and plastic 
properties of the rosin, has to be solved through a number of iterations. With appropriate parameters, 
however, it appears to yield a quite good approximation of the dynamic properties observed, except 
for a couple of shortcomings: It gives unrealistically high coefficients during the initial slip in starting 
transients (due to inadequate heating), and unrealistically high temperatures for high bowing speeds12. 
 
Other models that have been proposed, take into consideration the possibility of bristle-like properties of 
the rosin13. None of these suggest the presence of adhesion, which, in this author’s opinion, is likely to be 
an important feature of at least some of the rosins commercially available. One major difference between 
the plastic friction models and their predecessors, is that the plastic model prevents the discontinuities 
produced by the exponential and hyperbolic models when the relative velocity jumps directly from 
zero (in combination with the limiting static friction force during stick), to a high velocity (in 
combination with a low sliding-friction value at release). That is, a jump from the apex of the friction 
curve to the coordinate where the string’s load line intersects with its tail. Such discontinuous behavior 
brings forth high-partial energy that would never be observed in real strings. With the temperature-
related plastic model, this transition is bound to happen gradually, even for strings that are perfectly 
flexible. Figure 14 shows simulations with two quasi-plastic models, their only difference being the 
time constant, which controls how fast changes of friction coefficient happen. The panels show spectra 
and frictional hysteresis of a string in steady-state Helmholtz motion, all bowing parameters fixed. 



 
Figure 14: Comparison of friction models
with two different (temperature-flux) time
constants. Simulation of high-gauge violin
G-string played at 196 Hz. 
 
Upper panel: Spectra of force on the bridge
during steady state (bowing parameters
fixed). Notice how the energy of higher
partials is reduced when the time constant
of the friction model is increased. 
 
Lower panels: Trajectories of friction force
vs. relative velocity. The maximum speed
during slip decreases as the time constant
increases. This forces the slipping period to
occupy a greater interval. A slight
prolongation of the fundamental period  was
also observed. (Noise generation not
included in this simulation.) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
                                                 

References 
 
1 Cremer, L. (1972 and 1973) “The influence of ’bow pressure’ on the movement of a bowed string. Part I and II”. 

NL. Catgut Acoust. Soc. #18, 13-19 and #19, 21-25. 
2 Schelleng, J. C. (1973) “The bowed string and the player”. J. Acoust. Soc. Amer. 53(1), 26-41. 
3 Guettler, K., Schoonderwaldt, E. and Askenfelt, A., (2003) “Bow speed or bowing position—which one influences 

the spectrum the most?” Proceedings of the Stockholm Music Acoustics Conference (SMAC’03) Vol. I, 67-70. 
4 Weinreich, G., and Caussé, R., (1991) ”Elementary stability considerations for bowed-string motion”. Journal of 

the Acoustical Society of America, 89(2), 887-895.  
5 Schoonderwaldt, E., Guettler, K., and Askenfelt, A., (2003) ”Effect of the bow-hair width on the violin spectrum” 

Proceedings of the Stockholm Music Acoustics Conference (SMAC’03) Vol. I, 91-94.  
6 Raman, C. V., (1918) “On the mechanical theory of the vibrations of bowed strings and of musical instruments 

of the violin family, with experimental verification of the results. Part I”. Indian Assoc. for the Cultivation 
of Science, Bull 15, pp 1-158.  

7 Guettler, K. (2002) ”On the creation of the Helmholtz motion in bowed strings”, Acta Acustica/Acustica Vol. 88, 
970-985. 

8 Guettler, K., & Askenfelt, A. (1997). ”Acceptance limits for the duration of pre-Helmholtz transients in bowed 
string attacks”. Journal of the Acoustical Society of America, 101(5) Pt 1, 2903-2913. 

9 Guettler, K. and Askenfelt, A. (1998). On the kinematics of spiccato and ricochet bowing. Catgut Acoustical 
Society Journal, 3(6) Ser. 2, 9-15. 

10 Askenfelt, A., and Guettler, K. (1998) “The bouncing bow – An experimental study” CASJ Vol. 3, No 6 (II), 3-8. 
11 Smith, J. H., and Woodhouse, J., (2000) “The tribology of rosin”, J. Mech. Phys. Solids, 48, 1633-1681. 
12 Galuzzo, P. M., and Woodhouse, J., (2003) “Experiments with an automatic bowing machine”, Proceedings of the 

Stockholm Music Acoustics Conference (SMAC’03) Vol. I, 55-58. 
13 Serafin, S., et al. (2003) ”Bowed string simulation using an elasto-plastic friction model” Proceedings of the 

Stockholm Music Acoustics Conference (SMAC’03) Vol. I, 95-98. 


	Knut Guettler
	Abstract
	
	Control of tone color during steady state



