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Summary
An experimental study of the upper and lower bow-force limits for bowed violin strings is reported. A bowing
machine was used to perform bow strokes with a real violin bow on steel D and E strings mounted on a rigid
monochord and on a violin. Measurements were systematically performed for 11 values of relative bow-bridge
distance and 24 values of bow force at four bow velocities (5, 10, 15 and 20 cm/s). The measured string velocity
signals were used to compile Schelleng diagrams, showing the distribution of different classes of string mo-
tion (multiple slipping, Helmholtz motion, raucous motion). It was found that the maximum bow-force limit for
Helmholtz motion corresponded well to Schelleng’s equation in modified form, taking the shape of the (hyper-
bolic) friction curve into account. The minimum bow force was found to be independent of bow velocity, which
is in clear contradiction to Schelleng’s prediction. Observations and simulations suggested that the breakdown
of Helmholtz motion at low bow forces involves a mechanism related to ripple and corner rounding which was
not taken into account in Schelleng’s derivation of minimum bow force. The influence of damping showed only
qualitative agreement with Schelleng’s predictions.

PACS no. 43.75.De

1. Introduction

Tone production in a bowed-string instrument is governed
by a complex frictional interaction between the bow and
the string. The physics of the interaction provides the
player the means to control the sound via the three main
bowing parameters bow velocity, bow force and bow-
bridge distance, but imposes constraints as well.

In classical playing Helmholtz motion is the established
norm for violin sound, corresponding to a regular string
vibration with one slip and stick phase per fundamental
period. Two requirements on the bow force must be met
to maintain Helmholtz motion: (1) during the stick phase
the bow force must be high enough to avoid premature
slipping of the string, and (2) the bow force must be low
enough that the circulating Helmholtz corner can trigger
the release of the string at the initiation of the slip phase.
For a given combination of bow velocity and bow-bridge
distance there is a certain range in bow force which must
be respected.

1.1. Bow-force limits

The limits of the playable region have been formalized by
Schelleng [1], who gave expressions for the minimum and
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the maximum bow force as function of relative bow-bridge
distance β and bow velocity vB:

Fmax =
2Z0vB

(µs − µd)β
, (1)

and Fmin =
Z2

0vB

2R(µs − µd)β2
. (2)

Here Z0 is the characteristic transverse impedance of the
string, µs the maximum static friction coefficient, and µd
the dynamic friction coefficient. R originates from Ra-
man’s string model on which Schelleng based his deriva-
tions with a fixed string termination at the nut and a pure
mechanical resistance R at the bridge. The friction coeffi-
cient delta (µs − µd) will be referred to as Δµ in the fol-
lowing.

It could be noted that the factor 2 in the numerator of
equation (1) was not present in the original equation de-
rived by Schelleng, but was mentioned by him in a foot-
note (footnote #10 in [1]). This factor is a necessary con-
dition for complete reflection of the discontinuity arriving
from the nut at the bow, and previous studies of the max-
imum bow-force limit have taken this factor into account,
e.g., Askenfelt [2], Woodhouse [3], Schumacher [4], and
Galluzzo [5].

Schelleng introduced a diagram with a log-log repre-
sentation of relative bow force versus relative bow-bridge
distance. In the classical Schelleng diagram the upper and
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lower bow-force limits form straight lines with slopes of
−1 and −2, respectively, demarcating a triangular-shaped
playable region with Helmholtz motion. An important un-
derlying assumption is that the friction coefficient deltaΔµ
is constant. This is mostly a reasonable approximation for
high bow velocities and short bow-bridge distances, but
it does not hold in general since the dynamic friction co-
efficient is dependent on slip velocity. This was already
realized by Raman [6] and used by him to explain his ob-
servation that the minimum bow force approached a finite
minimum for decreasing bow velocities.

The variation in Δµ can be accounted for in the Schel-
leng equations by introducing a functional form of the fric-
tion curve. This was done by Schelleng for the minimum
bow force using a hyperbolic friction curve of the form:

µ = µ�d +K/(z − z0), (3)

in which z is the relative slip velocity vB/β, z0 a veloc-
ity offset to obtain a finite value for µs at z = 0, µ�d the
asymptotic value of µ for z → ∞, and K a constant de-
termining the curvature. The friction coefficient delta can
then be rewritten as:

(µs − µd) = z(µs − µ�d)/(z + z0)

and the modified minimum bow force is then obtained by
substitution of (µs − µd) in equation (2):

Fmin =
Z2

0

2R(µs − µ�d)
· vB + βz0

β2
. (4)

Note that equation (4) reduces to equation (2) when z0 =
0. The factor (µs−µ�d) is a constant, representing the differ-
ence between the maximum static friction coefficient and
the asymptotic value of µ (the minimum value in case of
the hyperbolic friction curve). It will be referred to as Δµ�

in the following.
In the modified model the minimum bow force ap-

proaches a finite minimum when the bow velocity ap-
proaches zero, but the shape of the lower bow-force limit
in the Schelleng diagram is also altered. When vB ap-
proaches zero, the minimum bow force becomes propor-
tional to 1/β, rather than 1/β2. Furthermore, for constant
vB the term βz0 in equation (4) gains relative importance
with increasing β, leading to a curvature in the lower bow-
force limit.

Also the maximum bow force can be modified, taking
the functional form of the friction curve into account. Us-
ing the same hyperbolic friction curve (equation 3) an ana-
logue derivation of the maximum bow force yields

Fmax =
2Z0

(µs − µ�d)
· vB + βz0

β
. (5)

The consequences for the upper bow-force limit are the
same as for the lower limit. The maximum bow force ap-
proaches a finite minimum when vB approaches zero, and
the upper bow-force limit in the Schelleng diagram will be
slightly curved.

This way of rewriting the Schelleng bow-force limits is
based on the assumption that the friction curve can be de-
scribed by a hyperbolic function, only dependent on the
relative velocity. This type of friction curve has been ap-
plied in many bowed-string simulations. It is also possible
to derive modified Schelleng equations for a more general
class of velocity-dependent friction curves, as Schumacher
[4] has done for the maximum bow force.

Another approximation used by Schelleng was to ne-
glect the effects of torsion and dispersion in the string.
However, the rotational compliance of the string can have
a significant influence on the maximum bow force. In
order to take this into account the transverse charac-
teristic impedance Z0 in equations (1) and (5) should
be replaced by the combined characteristic tangential
impedance Ztot = Z0ZR/(Z0 + ZR), with ZR the tor-
sional wave impedance, which is typically a factor 2 to
4 higher than Z0 [4, 7]. This results in a lowering of the
maximum bow force. In the expressions for minimum bow
force, equations (2) and (4) the factor Z2

0 should be re-
placed byZtotZ0, as the factorZ0/R is associated with the
transfer function from string to body and is not influenced
by torsion of the string at the bow-string contact point.

1.2. Previous measurements of bow-force limits

Only a few experimental studies of bow-force limits have
been published, most of them focusing on the minimum
bow force. The earliest known experimental study of min-
imum bow force was done by Raman [6], using an in-
genious mechanical bowing machine, a real bow and a
real violin. His main findings were that (1) the minimum
bow force was proportional to 1/β2, (2) the minimum
bow force increased with bow velocity (however generally
not proportionally), and (3) the minimum bow force was
strongly increased at certain resonances of the violin. The
first two findings were later confirmed by measurements
of Lazarus (see Cremer [8], section 4.5).

The maximum bow force has been experimentally mea-
sured by Schumacher [4] for a number of different strings.
A real bow and violin were used, and bow velocity and
bow force were controlled by a computer-controlled bow-
ing machine. From the measurements the values of Δµ
and Δµ� were estimated (in Schumacher’s [4] notation in-
dicated by Δµ∗ and Δµ, respectively), using Schelleng’s
equation for maximum bow force in a generalized form
and taking the torsional wave impedance of the string into
account. The findings suggested a reasonable agreement
between the observed values of maximum bow force and
Schelleng’s generalized equation.

Previous experimental verifications of a complete
Schelleng diagram under well-controlled conditions have
been limited to a cello string at a single bow velocity [5].
In that experiment a computer-controlled bowing machine
was used to bow a cello D string with a rosined perspex rod
at a velocity of 5 cm/s. The rod was considered as a rigid
point bow, and was chosen to allow for an easier compari-
son of the experimental results with bowed-string simula-
tions. Also in this study, the dependence of the observed
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bow force limits on bow-bridge distance was found to be
in reasonable agreement with Schelleng’s equations (equa-
tions 1 and 2). At some particular values of β, close to inte-
ger ratios, also S-motion was found, characterized by very
large ripple. S-motion occurred mostly beyond the maxi-
mum bow force limit, but also at higher bow forces within
the Helmholtz region, forming ‘columns’ in the Schelleng
diagram. S-motion can be considered as a ‘higher’ type of
string motion, described in detail by Lawergren [9].

1.3. Influence of the instrument, corner rounding
and ripple

The minimum bow force is dependent on the energy
losses. In Schelleng’s equation for the minimum bow force
(equations 2 and 4) this is expressed by the mechanical re-
sistance R, which represents the combined losses due to
the internal friction in the string, the reflections at both
string terminations (bridge and nut/finger) and the bow-
string interaction. As the bridge mobility is strongly de-
pendent on frequency due to the resonance structure of the
instrument, the minimum bow force can vary greatly be-
tween notes played on the same instrument or between dif-
ferent instruments. For this reason the minimum bow force
and its variation within a single instrument has often been
considered as a promising measure of the ‘playability’ of
an instrument [10]. Playability has been introduced as a
concept reflecting how an instrument reacts to the actions
of the player. This aspect was taken up already by Raman
[6] in his measurements of minimum bow force for dif-
ferent notes. Saunders [11], using a rotating group of thin
celluloid disks to bow the violin under controlled condi-
tions, carried the work further by exploring the minimum
bow force necessary to ‘make the violin speak properly’
for different notes, and made comparisons with ‘loudness
curves’ showing the acoustical output for bowed notes at
different pitches.

It is well known that the Raman string model is not very
realistic. The approximation that the string termination at
the bridge is purely resistive implies that the reflection
function is characterized by a delta function. This means
that the shape of the reflected waves remains unaltered, the
reflections only being attenuated by a constant factor de-
pending on the amount of damping. As a result the Raman
model does not account for corner rounding and ripple,
typically present in observations of real string vibrations
and in realistic bowed-string simulations.

Woodhouse [3] has derived a more general equation for
the minimum bow force, without the restrictive assump-
tion of the Raman model. This equation allowed him to
use measured admittance curves to predict the frequency
dependence of the minimum bow force for particular in-
struments. The generalization also makes it possible to de-
rive the minimum bow force for other theoretical instru-
ment models. This feature was demonstrated by Wood-
house [3] for the Cremer model, which is similar to the
Raman model, but with an additional reactive component
(see Cremer [8] and Woodhouse [10]). It was shown that
the minimum bow force for Cremer’s model, and for mod-
els characterized by narrow reflection functions in general,

was very low. Simulations showed that the slip phase at
low bow forces could be significantly prolonged due to
corner rounding, even to an unrealistic extent. The discrep-
ancy between these simulations and a real bowed string
was explained by the presence of another source of per-
turbing force during the stick phase, namely ‘secondary’
waves or ripple, the reflected waves between the bow and
the bridge during the stick phase. This effect is also ig-
nored in Schelleng’s arguments for the presence of a min-
imum bow force.

The lengthening of the slip phase by corner rounding
can be easily understood as follows. In a crude approx-
imation corner rounding can be described by a moving-
average filter of finite width. With repeated filtering the
Helmholtz corner becomes increasingly rounded, an effect
counteracted by resharpening at the bowing point. Corner
sharpening increases with bow force and friction delta. As
an effect of corner rounding the sudden transition from
stick to slip is smeared out in time, resulting in a flank
with finite slope, a longer duration of the slip phase and
a shorter duration of the slipping part with nominal slip
velocity. (The duration of the slip at half height remains
unchanged, corresponding to the nominal slip duration of
ideal Helmholtz motion). When the effect of rounding ex-
tends over a time interval longer than the nominal duration
of the slip phase, the nominal slip velocity is no longer
reached, and the slip phase starts to collapse.

Even though this simplified representation of corner
rounding is far from realistic the qualitative influence on
the shape of the slip phase is described rather well, com-
parable with more sophisticated models of corner round-
ing (see for example the Appendix in Boutillon [12]) and
measured string-velocity signals.

1.4. Aim of the study
The main purpose of the current study was to perform
a systematic experimental investigation of the bow-force
limits in the Schelleng diagram. In order to stay close
to the reality experienced by the player a normal vio-
lin bow was used to bow standard strings mounted on
a monochord and on a violin. Empirical Schelleng dia-
grams were compiled for different strings and at different
bow velocities. The bowing parameters were controlled
with a computer-controlled bowing machine, and an in-
teractive, semi-automatic method was used for string mo-
tion classification (see section 2). The observed bow-force
limits were used for evaluation of Schelleng’s equations
by means of curve fitting and estimation of the friction-
coefficient delta (section 3).

A second experiment was performed to shed more light
on the string motion close to the minimum bow force (sec-
tion 4). In this experiment the minimum bow force was
determined more accurately, taking the variance observed
in this region into account. Also the transition from Helm-
holtz motion to multiple slipping was studied more closely
in relation to the shape of the slip phase.

In a third experiment, the influence of the damping fac-
torR on the minimum bow force was investigated (section
5). For this purpose the minimum bow force was measured

606



Schoonderwaldt et al.: Empirical investigation of bow-force limits ACTA ACUSTICA UNITED WITH ACUSTICA
Vol. 94 (2008)

on a monochord and a violin using both open and stopped
strings. The values of R were estimated from the decay
times of the plucked notes, allowing for direct comparison
with Schelleng’s equation for minimum bow force.

In addition to a detailed investigation of the bow-force
limits two other features which also are dependent on the
combination of bowing parameters were studied in rela-
tion to the Schelleng diagram: pitch flattening and the
spectral centroid. The analysis of these data will be re-
ported elsewhere.

2. Method
2.1. Experimental setup
Empirical Schelleng diagrams were obtained using a nor-
mal bow driven by a computer-controlled bowing ma-
chine [13]. Most measurements were performed on a rigid
monochord, in order to avoid the influence of the promi-
nent body modes of a violin. The monochord consisted
of a duraluminium bar with a U-shaped cross-section
(60×40mm), glued onto a solid piece of hardwood. The
dimensions and geometry of the monochord were copied
from a standard modern violin (string length 325mm,
bridge height 42mm above a reference line through the nut
and the tailpiece rest). The solid duraluminium bridge had
the same shape as a normal violin bridge with notches for
the strings. Also the nut, made of a hard plastic, was mod-
eled according to a violin. At both string supports (bridge
and nut) a piece of tape (medical waterproof tape, thick-
ness 0.27mm) was applied to improve the contact between
the string and the support and add appropriate damping.
Without tape it was observed that pizzicato notes some-
times resulted in sitar-like sounds, indicating the presence
of a non-linear interaction between the string and the string
termination. The violin used for some of the measurements
in section 5 was a modern master violin built in 1997 by
Matthieu Besseling.

The strings used were violin D and E steel strings man-
ufactured by Prim (‘Medium tone’). The D string had
a steel core and a chrome steel winding (outer diameter
0.70mm, linear density ρL = 1.29 g/m, Z0 = 0.25 kg/s).
The E string was a plain steel string (diameter 0.26mm,
ρL = 0.41 g/m, Z0 = 0.18 kg/s). The strings were tuned
to nominal pitch: D4 = 293Hz and E5 = 660Hz. The
linear densities were carefully measured using the speak-
ing lengths of the strings as samples after having been
brought up to nominal playing frequency. The character-
istic impedance was calculated as Z0 = 2ρLLf1, where L
is the speaking length and f1 fundamental frequency.

The bow used was a carbon fibre composite bow manu-
factured by Leopold, 1 with a total mass of 58 g. The width
of the bow hair ribbon was 10mm. The rosin used was Pi-
rastro Oliv/Evah.

The transverse string velocity under the bow was mea-
sured using a small cylindrical magnet (diameter 6mm).
The gap between the magnet and the string was typi-
cally 1 mm. The magnet was mounted in a plastic holder

1 http://www.leopold-bow.com

which could be accurately positioned in two directions by
means of two adjustable slides. The induced voltage was
picked up by electrodes attached to the passive parts of
the string and amplified with a balanced microphone pre-
amplifier (Symmetrix SX 202). The string velocity signal
was recorded into the computer using an external sound
device (Tascam US-122) at a sampling rate of 44.1 kHz.

A linear relation between the induced signal and the
transverse string velocity requires that the width of the
magnet is large compared to the vibration amplitude. As-
suming ideal Helmholtz motion (and disregarding the
static displacement), the amplitude of string displacement
at the bowing point is estimated by (1−β) T1 vB , where T1

is the fundamental period. In the experiments the displace-
ment amplitude during Helmholtz motion did not exceed
0.6mm (for vB = 20mm/s, β = 1/6 and T1 = 3.4 ms),
which is a factor 10 less than the diameter of the magnet.
Even in the case of other types of motion, such as raucous
motion or anomalous low frequencies (ALF), which are
characterized by prolonged periods normally up to three
times T1, the string displacement was considerably smaller
than the width of the magnet.

Due to the finite width of the magnet the measured
string velocity signal is somewhat smoothed. Assuming
that the effective width of the magnetic field was 50%
wider than the actual magnet diameter, the averaging win-
dow with respect to one fundamental period is about
d/2L ≈ 0.01. For the D string sampled at 44.1 kHz (150
samples/period) the averaging window is about 1.5 sam-
ples, which is negligible for the purpose of string motion
classification.

2.2. The bowing machine

The bowing machine was a converted daisy wheel printer
controlled by an AT computer [13]. The machine per-
formed bow strokes defined in input files containing target
bow position and bow force contours sampled at a rate of
600 Hz. The bowing machine could reliably produce bow
velocities up to 30 cm/s (and probably higher). In the range
5-30 cm/s the maximum amplitude of the velocity fluctua-
tions during steady-state bow strokes (with moderate bow-
force) was of the order of 5mm/s. The RMS value of the
fluctuations at the lowest bow velocity (5 cm/s) reached
about 5%.

The maximum bow force that could be supplied by the
servo motor of the bowing machine was limited to about
2 N in the lower half of the bow, decreasing to about 1 N in
the upper half. In order to reach higher bow forces an extra
mass (327 gram) was mounted on the bow hold to increase
the contribution of gravity to the torque. In this way bow
forces up to 3 N could be reached when approaching the
frog.

The maximum fluctuation in bow force during steady-
state bow strokes was about 20mN for down-bows and
30mN for up-bows throughout the range of used bow
forces (49-3000mN). Thus, the relative fluctuation error
was largest at low bow forces. The RMS value of the fluc-
tuations relative to the lowest target force (49mN) was
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about 20% for down-bows and 30% for up-bows. The rel-
ative RMS value dropped below 10% for target forces
higher than 100mN for down-bows and 143mN for up-
bows.

2.3. Bowing parameters
The bowing parameters studied included the relative bow-
bridge distance β, bow force FB and bow velocity vB . The
parameter ranges were chosen to represent a substantial
part of the control space in normal violin playing (see e.g.
Askenfelt [2]).

The β range (about 1/30 to 1/6), was divided into a grid
of 11 logarithmically-spaced values (11, 13, 15, 18, 21, 24,
29, 34, 39, 46 and 55mm). The bow-bridge distance was
set by placing the magnet under the string with its center in
the target position. Then the alignment of the bowing ma-
chine was adjusted so that the middle of the bow hair rib-
bon coincided with the center of the magnet. The achieved
positioning accuracy was estimated to be about ±0.5mm.
For all presented measurements the bow hair was flat on
the string (no bow tilt). It could be noted that due to the
finite width of the bow hair (10mm) a substantial range of
β values were covered across the contact surface with the
string. For the shortest bow-bridge distance used (11mm)
the edges of the bow hair corresponded to β values of 1/54
and 1/20, respectively. For the six shortest bow-bridge dis-
tances (up to 24mm), the bow positions were overlapping,
meaning that the previous center-line position was covered
by the bow hair ribbon in the next position.

The force range (49–3000mN) was divided into a grid
of 24 logarithmically-spaced values (49, 58, 70, 84, 100,
120, 143, 171, 205, 245, 293, 350, 419, 501, 599, 716,
857, 1025, 1226, 1466, 1753, 2097, 2508 and 3000mN).
The bow velocities used were 5, 10, 15 and 20 cm/s.

2.4. Bow strokes
In the design of the bow strokes the following criteria were
taken into account: (1) Helmholtz motion should be de-
veloped in the initial phase of the bow strokes, and (2)
the steady part of the bow strokes (with constant bow ve-
locity and bow force) should last long enough to estab-
lish a stable string motion pattern. These criteria resulted
in a standard shape for the bow velocity and bow force
contours as shown in Figure 1. The bow strokes were di-
vided into four time intervals, the initial phase Tinit, the
transition phase Ttrans, the steady phase Tsteady and the stop
phase Tstop. The exact shape and the duration of the differ-
ent phases were dependent on the target values of bow ve-
locity and bow force, as well as on the conditions required
for rapid development of Helmholtz motion. The total du-
ration of the dynamic part (Ttrans+Tsteady+Tstop) of the bow
stroke was constrained due to limited stroke of the bowing
machine (max. 31 cm), which necessitated a trade-off be-
tween Ttrans and Tsteady, especially at higher bow velocities.
Typical durations used were 0.5-1.0 seconds for Ttrans and
0.65-4.0 s for Tsteady.

For the two highest bow velocities (15 and 20 cm/s)
Tsteady was rather short. For comparison, Galluzzo [5]
monitored the motion of a cello D string by taking a
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Figure 1. An example of bow velocity and bow force contours
used for measuring Schelleng diagrams. The acceleration-force
combination during the attacks (start of Ttrans) was chosen to ob-
tain short pre-Helmholtz transients. During the transition phase
Ttrans the force was smoothly changed to the target force Ftarget.
Bow velocity and bow force were kept constant during Tsteady.

100-ms sample after 2 s of steady bowing. However, the
string velocity signals measured in the current experiments
showed that changes in string motion occurred practically
simultaneously with changes in bow forces (both upwards
and downwards) and no long delays were observed for
transitions between different types of string motion. Thus,
it was concluded that Tsteady was long enough for reliable
string motion classification also at the two highest bow ve-
locities.

2.5. Experimental conditions
External factors will influence the string motion to some
extent. Such factors include tuning, amount and quality of
the rosin, bow-hair tension, and possibly also temperature
and humidity. On a longer term aging of the string and the
bow hair could also play a role. Steps were taken to keep
the experimental conditions as constant as possible. Before
each measurement session the string was tuned to nominal
frequency and a small amount of rosin was applied by rub-
bing the bow hair against the piece of rosin back and forth
once or twice. The bow was then prepared for playing by
drawing some long notes before the actual measurements
started. Furthermore, the time span in which the measure-
ments were performed was kept as short as possible. In
order to minimize possible trends in data due to external
factors the bow-bridge distances were measured in random
order in most of the presented measurements.

2.6. String motion classification method
The compilation of Schelleng diagrams requires classifi-
cation of different types of string motion. Examples of the
most common types, including Helmholtz motion, multi-
ple slipping and raucous motion are shown in Figure 2.
Other, more peculiar string vibration patterns observed
were anomalous low frequency (ALF) and S-motion.
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Figure 2. Examples of common types of string motion (veloc-
ity) as recorded in the experiments: (a) Helmholtz motion, (b)
multiple slipping and (c) raucous motion.

In order to facilitate the classification of string velocity
signals a novel interactive method was developed. First,
the slip phases in a selected interval were identified, using
a simple velocity threshold criterion. Second, two features
were determined for each detected slip phase: (1) the slip-
to-slip time interval (between the previous and the cur-
rent slip phase), and (2) the string displacement during the
slip phase. These features were then displayed in a two-
dimensional scatter plot of displacement versus time, in
the following referred to as a classification diagram. The
velocity threshold for the detection of slip phases was by
default −vB , but could be manually adjusted. As the string
velocity signals were not calibrated vB was estimated by
the median of the signal during stick phase. The onset and
offset times of the detected slip phases were determined
from the zero-crossings, using linear interpolation.

In case of ideal Helmholtz motion with constant vB and
β all slip phases coincide at one point in the classification
diagramwith the fundamental period T1 as time coordinate
and the extent of the string displacement at the bowing
point (1 − β)T1vB as the displacement coordinate (Helm-
holtz reference point). All measured points were normal-
ized with respect to this reference point.

The different types of string motion were in most cases
clearly recognizable from the emerging pattern in the clas-
sification diagram. Some typical examples are shown in
Figure 3a–d, illustrating the classification diagrams of the
string motions in Figure 2. In case of Helmholtz motion
(panel a) the points fall into a single cluster close to the
reference point. In case of multiple slipping (panel b) the
points form a set of two or more clusters, corresponding
to the different slip phases within the fundamental period.
This reflects the fact that multiple slipping is a rather per-
sistent periodic type of motion. All clusters lie within the
reference rectangle spanned up by the fundamental period
and the displacement of ideal Helmholtz motion, but not
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Figure 3. Examples of string motion classification diagrams for
(a) Helmholtz motion, (b) multiple slipping motion, (c) raucous
motion, and (d) anomalous low frequency (ALF). The classifi-
cation diagrams are scatter plots of displacement during the slip
phase dslip versus slip-to-slip interval Tslip. Each point in the di-
agram corresponds to one detected slip phase. The units in the
diagram are normalized with respect to the fundamental period
T1 and displacement for ideal Helmholtz motion. The intersec-
tion between the two dashed lines indicates the reference point
for Helmholtz motion.

necessarily on the diagonal. In case of raucous motion
(panel c) the points are more or less randomly distributed
across the diagram, reflecting the aperiodicity of this type
of motion. Some points fall outside the reference rectan-
gle, indicating the presence of prolonged periods. Finally,
in case of ALF (panel d) the points fall in a single cluster,
indicating the periodicity of the signal. The cluster lies far
outside the reference rectangle, on an extended diagonal
between the origin and the reference point.

The described classification method has some similar-
ities with the classification method of transverse bridge-
force waveforms used by Woodhouse [14]. In that method
a classification histogram is constructed, based on a se-
lected portion of the bridge-force signal. The distances be-
tween the peaks in the histogram correspond to the mag-
nitude of the flyback force, which is proportional to the
string displacement during the slip phase measured close
to the bridge. No explicit timing measurements were used
by Woodhouse for the classification.

3. Experiment I: Empirical Schelleng dia-
grams

3.1. Experimental procedure and analysis

Empirical Schelleng diagrams were measured for the
D string on the monochord at four bow velocities (5, 10,
15 and 20 cm/s), 11 values of β and 24 values of FB . For
each bow-bridge distance a series of bow strokes was per-
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(c) 15 cm/s (d) 20 cm/s

Figure 4. Schelleng diagrams for a vio-
lin steel D string mounted on a mono-
chord at four bow velocities (in cm/s): 5
(a), 10 (b), 15 (c) and 20 (d). Helmholtz
motion is indicated by open squares
( ), constant slipping by dots (·), mul-
tiple slipping by plus signs (+), and
raucous motion by crosses (×). Other
observed types of motion were anoma-
lous low frequency (ALF), indicated by
open circles (◦) and S-motion indicated
by asterisks (∗). The solid lines indicate
the fitted upper and lower bow-force
limits according to the basic Schelleng
model, equations (1) and (2), and the
dashed lines the fitted upper limit ac-
cording to the modified model, equation
(5). The line in the upper part of panel
(b) shows the separation of the ALF re-
gion in string motion with double and
triple period lengths. The larger circles
indicate the minimum bow force values
at β values 1/25 and 1/18.1 found in Ex-
periment II.

formed with successively higher bow force and three re-
peated measurements at each force value. String motion
classification was applied on a manually selected portion
of the signal (10 nominal periods), typically close to the
end of the steady part of bowing. A final decision about
the type of string motion was taken by the experimenter
after inspection of both the string-velocity signal and the
classification diagram.

3.2. Playable region and bow-force limits

The obtained Schelleng diagrams are displayed in Fig-
ure 4, in which the observed types of string motion are
indicated with different symbols. At all bow velocities a
continuous playable region of Helmholtz motion could
be observed with clear upper and lower bow-force lim-
its. The triangular shape of the Helmholtz regions is in
agreement with Schelleng’s observations [1]. The upper
and lower bow-force limits formed approximately straight
lines, in good agreement with the predictions of equations
(1) and (2) (see section 3.3). Above the upper bow-force
limit mostly raucous motion was observed, as well as some
cases of anomalous low frequency (ALF) and S-motion.
Below the lower limit multiple slipping, multiple flyback
and constant slipping motion were observed.

The four panels in Figure 4 show how the playable re-
gion depended on bow velocity. It can be seen that the
playable region became larger with increasing bow veloc-
ity. The upper bow-force limit was clearly shifted upward,
while the lower limit remained rather constant. The obser-
vation that the upper bow-force limit increased with in-
creasing bow velocity is in agreement with equation (1),
which predicts that the upper limit is proportional to vB .

However, the independence of the lower bow-force limit
on bow velocity is a surprising result in view of that vB
also appears in the numerator of equation (2). This behav-
ior will be further examined in sections 3.8 and 4.3.

An interesting detail was that clear playable regions of
anomalous low frequencies (ALF) were found, especially
at bow velocities of 10 and 15 cm/s (see Figure 4b and c).
Different types of ALF were found, mostly with periods
of twice or three times the fundamental period. The lat-
ter was found at higher bow forces and larger values of β.
In Figure 4 (b) the separation between the ALF regions
with twice and three times the fundamental period is in-
dicated. The shape of the ALF regions resembles the tri-
angular region of Helmholtz motion, showing decreasing
bow-force limits with increasing β. Both areas are however
quite small, indicating that the stability of ALF is critically
dependent on the bowing parameters.

In most cases, the string motion could be classified with-
out any problem. However, in the vicinity of the min-
imum bow force the type of motion could not always
be determined unambiguously, due to repeated alterna-
tion between Helmholtz motion and multiple slipping. In
these cases the classification could depend on where in
the ‘steady part’ the analyzed sample was taken. A restric-
tive strategy was used by classifying the string motion as
Helmholtz motion only when there was no doubt about
the stability. Also close to the maximum bow force the de-
tection of Helmholtz motion could be ambiguous due to a
large amount of ripple, jitter and pitch flattening. In these
cases the adopted strategy was to classify the string vibra-
tion as Helmholtz motion if no clear random slip-to-slip
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intervals or indications of other types of motion (ALF, S-
motion) were found.

3.3. Fitting of Schelleng’s bow-force limits

According to equations (1) and (2), the upper and lower
bow-force limits are proportional to 1/β and 1/β2, respec-
tively, at constant bow velocity vB and under the assump-
tion that the friction-coefficient delta (µs−µd) is constant.
The constants of proportionality can be written as

cupper = 2Z0vB/(µs − µd) (6)

and clower = Z2
0vB/2R(µs − µd). (7)

The Schelleng limits were fitted in the logarithmic domain
using a least-squares method, yielding an estimate of cupper

and clower (see Table I) as well as the 95% confidence
bounds. To avoid bias the bow-force limits at each β were
set between the observed Helmholtz and non-Helmholtz
regions. This was achieved by taking the geometric mean
of the adjoining points. The fitted bow-force limits are in-
dicated by solid lines in the Schelleng diagrams in Fig-
ure 4.

Given the characteristic impedance Z0 of 0.25 kg/s the
obtained values of cupper can now be used to estimate the
value of the friction-coefficient delta Δµ (see Table I). The
estimated values of Δµ were close to 0.6 except for the
lowest bow velocity. These values, however, are slightly
overestimated as string torsion has not been taken into
account. Assuming that the torsional impedance of the
D string used is about a factor two higher than Z0 (e.g.,
Schumacher [4]), the total impedance at the string sur-
face Ztot is about 0.17 kg/s, resulting in an estimation of
Δµ = 0.4. Commonly, values of Δµ observed in experi-
ments, or used in simulations giving realistic output, range
between 0.3-0.8 (e.g. Galluzzo [5], Guettler [15], Lazarus
[16], Schumacher [17], and Smith & Woodhouse [18]).

3.4. Slope of the bow-force limits in the Schelleng
diagram

At some bow velocities, especially 5 and 10 cm/s, the data
in Figure 4 suggest that the slope of the upper bow-force
limit was not as steep as predicted by equation (1) un-
der the assumption that the friction-coefficient delta Δµ is
constant. An estimation of the deviation in slope from the
predicted value of −1 was made by comparing the fitted
Schelleng limits with an alternative model, in which the
slope was added as a fit parameter. It should be noted that
such a model has no physical interpretation presently.

The fitted slope values and the 95% confidence inter-
vals plotted versus bow velocity are shown in Figure 5.
It can be clearly seen that the slopes of the upper bow-
force limits were significantly less steep than the predicted
Schelleng slope (−1), except for 20 cm/s. At the two low-
est velocities (5 and 10 cm/s) the slopes were only about
−0.5. For the lower bow-force limit the fitted slopes were
not significantly different from the predicted slope of −2
at all bow velocities. However, the confidence intervals
were relatively large. The data in Figure 5 suggest that the

Table I. Values and estimated standard errors of cupper and clower

defining the upper and lower bow-force limits in the Schelleng
diagrams in Figure 4 (monochord, steel D string) The values
were obtained by fitting the Schelleng limits (equations 1 and
2) to the observed bow-force limits at different bow velocities
vB . The values of cupper were used to estimate Δµ. The standard
errors were calculated by dividing the 95% confidence intervals
of the fit results by a factor 3.92.

vB [cm/s] cupper [mN] clower [mN] Δµ

5 66 ± 7 0.43 ± 0.06 0.38
10 86 ± 8 0.47 ± 0.04 0.58
15 125 ± 8 0.38 ± 0.05 0.60
20 166 ± 7 0.38 ± 0.06 0.60
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Figure 5. Fitted slopes of the upper bow-force limits (squares,
dashed line) and the lower limits (circles, dash-dotted line) in
the Schelleng diagrams for different bow velocities in Figure 4.
The error bars indicate the 95% confidence intervals of the fitted
values. The predicted slopes for maximum and minimum bow
force (−1 and −2) are indicated by the horizontal dotted lines.

slopes of both the upper and the lower bow-force limits
become increasingly steep with increasing vB . A possible
explanation will be given in the next section.

3.5. Schelleng’s bow-force limits based on hyper-
bolic friction curve

In the preceding fits of the Schelleng limits, Δµ was con-
sidered constant. However, as explained in the introduc-
tion this is generally not a valid approximation, and the
observed deviations in the slope of the upper bow force
limit might be explained by variations in Δµ. It is there-
fore likely that the modified Schelleng equations, based on
the hyperbolic friction curve (equation 3), would provide
a better description of the observed bow-force limits.

For comparison the modified Schelleng equations (4)
and (5) were fitted to the observed bow-force limits at dif-
ferent bow speeds. The friction curve parameters were as-
sumed to be K = 8 cm/s, µ�d = 0.4 and z0 = 20 cm/s,
based on values commonly used in bowed-string simula-
tions of the violin (e.g., Guettler [15], Woodhouse [19]).
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Table II. Values of and estimated standard errors of c�upper and
c�lower defining the modified upper and lower bow force limits in
the Schelleng diagrams in Figure 4 (monochord, steel D string).
The values were obtained by fitting equations (4) and (5) to the
observed bow force limits at different bow velocities vB . The val-
ues of c�upper were used to estimate Δµ�.

vB [cm/s] c�upper [kg/s] c�lower [g/s] Δµ�

5 1.0 ± 0.24 7.0 ± 1.0 0.51
10 0.73 ± 0.05 4.2 ± 0.4 0.69
15 0.75 ± 0.04 2.3 ± 0.3 0.67
20 0.75 ± 0.03 1.8 ± 0.3 0.67

With these parameters the maximum static friction coeffi-
cient becomes µs = 0.8 and (µs − µd) = 0.4 for z → ∞
(i.e., Δµ� = 0.4).

Least-square fits were performed using the logarithmic
values of β and FB . The fit parameters were

c�upper = 2Z0/(µs − µ�d),

and c�lower = Z2
0/2R(µs − µ�d).

In contrast to cupper and clower (see equations 6 and 7) these
fit parameters are independent of bow velocity vB , and are
supposed to be constant. Note that only the choice of z0
explicitly influences the fitting, as (µs − µ�d) is included in
the fit parameters.

The fitted upper bow-force limits, corresponding to
equation (5) are indicated in Figure 4 with dashed lines.
It can be seen that the correspondence with the observed
upper bow-force limits was improved in comparison with
the earlier fits (solid lines). The differences were more
marked at lower bow velocities and explain partly the de-
viations from the predicted slopes when using the unmod-
ified Schelleng equations as discussed above.

The numerical fit results are displayed in Table II. The
values of Δµ� were estimated from c�upper, and were as ex-
pected somewhat larger than the estimated values of Δµ
in Table I. Taking the lowering by torsion into account the
value of Δµ� becomes 0.45.

In Table III the R2 values of the three alternative fit
methods used are shown for all four bow velocities. It can
be seen that the straight-line fit with variable slope gave
the best fit results. The modified Schelleng equation pro-
vided a better fit than the unmodified Schelleng equation,
especially at low bow velocities.

3.6. Reproducibility of the Schelleng diagram

In order to assess the reproducibility of the Schelleng di-
agrams in Figure 4 a comparison was made with a Schel-
leng diagrammeasured about five months earlier, using the
same experimental setup (string type, bow, monochord),
see Figure 6. The bow velocity was 10 cm/s correspond-
ing to Figure 4 (b). The only known difference was that
a slightly thinner PVC tape (thickness 0.17mm) was ap-
plied to the string supports. This could have altered the
reflection properties somewhat, but this change should not

Table III.R2 values for the alternative fits of the upper bow-force
limits. At bow velocities vB of 5 and 10 cm/s the R2 values could
not be calculated for the fits of equation (1). In these cases the
slope of the observed limits was less steep than −0.5, i.e., a fitted
line with slope −1 provided a poorer fit than a horizontal line.

vB Basic Sch. Modified Sch. Variable slope
(equation 1) (equation 5)

5 n/a 0.45 0.75
10 n/a 0.38 0.91
15 0.80 0.85 0.91
20 0.94 0.93 0.94
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Figure 6. Reproduced Schelleng diagram at a bow velocity of
10 cm/s, measured about 5 months earlier than the corresponding
diagram in Figure 4 (b). The solid lines represent the fitted Schel-
leng limits. The dashed line indicates the fitted lower bow-force
limit in Figure 4 (b). The fitted upper bow-force limits coincided
exactly.

have a substantial influence (see section 5 for the influence
of damping on the bow-force limits).

The fitted bow-force limits (according to equations 1
and 2) are shown in Figure 6 by solid lines. For compari-
son the fitted bow-force limits of Figure 4 (b) are indicated
with dashed lines. It can be seen that the playable regions
coincided rather well. The fitted upper bow-force limit co-
incided exactly with that in Figure 4 (b). Also the region
of ALF representing a doubling of the normal fundamen-
tal period was found at about the same combinations of
bowing parameters.

Some differences could be observed as well. In the
Schelleng diagram in Figure 6 the lower bow-force limit
was shifted approximately one step down on the force grid,
corresponding to about 20%. However, a difference of this
magnitude is not unexpected as the determination of the
lower force limit always is associated with greater uncer-
tainty than the upper limit (see section 4).

Furthermore, it can be seen that the slope of the fitted
upper bow-force limit coincided better with the observed
border between Helmholtz and raucous motion than in the
unmodified fit in Figure 4 (b). The fitted slope value was
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−0.9 compared to −0.5 (see Figure 5) and did not signifi-
cantly differ from the predicted slope of −1. The cause of
this difference is not directly clear but might be related to
the amount of rosin or other external conditions mentioned
in section 2.5.

All together, the generally good agreement between the
two Schelleng diagrams in Figures 4b and 6 indicates that
the reproducibility of the measurements was clearly ac-
ceptable. It seems safe to conclude that the observed type
of string motion was determined by the combination of
bowing parameters under control of the bowing machine,
and that external conditions only had a secondary influ-
ence.

3.7. Schelleng diagrams of the E string

The properties of the strings of the violin vary consider-
ably from the G to the E string. In order to verify the gen-
erality of Schelleng’s predictions and obtain an estimation
of the influence of Z0 and ZR Schelleng diagrams were
measured for the E string at two bow velocities (10 and
20 cm/s), see Figure 7.

Again, the overall shape of the playable regions with
Helmholtz motion was as expected at both bow velocities.
For comparison the fitted bow-force limits of the D string
in Figure 4 (b) and (d) are indicated with dashed lines.
Both the upper and lower bow-force limits of the E string
were found to be lower than those of the D string, the upper
bow-force limit by 19% and the lower bow-force limit by
64% (at vB =10 cm/s).

According to equation (1) the upper bow-force limit
should be proportional toZ0 under the assumption thatΔµ
is similar for both strings. This was clearly not the case, as
Z0 of the E string (0.18 kg/s) was 28% lower than that
of the D string. Taking torsion into account explains the
difference. Measurements by Schumacher [4] indicate that
the ratio ZR/Z0 for D strings (gut or synthetic core) is
about 2 (1.4-2.4) compared to approximately 3.5 for solid
steel E strings (theoretical value 3.7, Cremer [8]). Includ-
ing torsion in the calculation, the upper limit of the E string
is expected to be 16% lower than that of the D string,
which is close to the observed 19%. This agreement sug-
gests that Δµ is rather similar for the two strings.

The observed shift of the lower bow-force limit from
the D to the E string was larger than the predicted ratio in
Z2

0 given by equation 2 (−48% compared to the observed
−64%). Including torsion gave an even poorer agreement
(−40%). The discrepancy could probably be attributed to
the lower damping of the E string (larger R), as will be
discussed in section 5.

3.8. Dependence of bow-force limits on bow velocity

According to equations (1) and (2) both the maximum
and minimum bow force, and thus the values of cupper and
clower, should be proportional to vB . In Figure 8 the experi-
mental data for the bow-force limits for the D and E strings
are summarized, showing the estimated values of cupper

and clower versus vB .
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Figure 7. Schelleng diagrams for a steel E string mounted on a
monochord at bow velocities (a) 10 and (b) 20 cm/s. The fitted
Schelleng limits are indicated with solid lines. The fitted bow-
force limits of the D string in Figure 4 are indicated with dashed
lines. The middle parts of the Helmholtz regions, indicated by
gray squares, were not systematically analyzed, but there was no
doubt about the consistency of Helmholtz motion.

For higher bow velocities the upper bow-force limit of
the D string was found to be proportional to bow velocity,
as can be seen in Figure 8a. The fitted line, which was
forced to go through the origin (constant Δµ) coincided
well with the data, except at 5 cm/s, for which the limit
was found to be higher. Also for the E string the upper
bow force limit showed proportionality to vB .

In contrast, the lower bow-force limits for both the D
and the E strings showed no clear dependence on bow ve-
locity, as can be seen in Figure 8 (b). Instead, the lower
bow-force limits were found to be approximately constant
within the measured range of bow velocities, which is in
clear contradiction with Schelleng’s prediction (equation
2).

4. Experiment II: Minimum bow-force
limit – a closer look

An additional experiment was conducted to gain more in-
sight in the transition region around the minimum bow
force and the dependence of minimum bow force on bow
velocity. One concern regarding Experiment I was that the
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Figure 8. Dependence of the bow-force limits on bow velocity in
Experiment I. The plots show (a) cupper and (b) clower as function
of bow velocity, estimated from the Schelleng diagrams of the
D string (circles) and E string (squares). According to the Schel-
leng equations there should be a linear relationship. The solid
line in (a) shows a least-squares fit of the upper bow-force limit
of the D string according to equation (1), under the assumption
that Δµ is constant.

Schelleng diagrams were measured at different occasions
over a period of several weeks. For this reason it could not
be ruled out with certainty that the results were influenced
by changes in experimental conditions. Another problem
was that there was some ambiguity in the classification of
string motion in the vicinity of the lower bow-force limit
due to the occurrence of long transients and mixed types of
motion. As the string motion classification was based on
a single manually selected interval for each combination
of bowing parameters the transition region might not have
been characterized correctly, and the possibility exists that
the results could somehow have been biased. In the design
of the new experiment three main objectives were: (1) to
restrict the influence of the external conditions out of the
control of the experimenter, (2) to resolve the ambiguity
in string motion classification in the vicinity of the lower
bow-force limit, and (3) to reduce the significance of the
role of the experimenter in the string motion classification
procedure.

In Experiment II transitions from Helmholtz to multi-
ple slipping motion were also studied in detail by using
bow strokes with a gradually decreasing bow force. The
hypothesis was that observations of the changes in string
velocity waveforms in the vicinity of the breakdown of

Table IV. Results of string motion classification in Experiment II
at β = 1/25. For each combination of bow velocity vB and bow
force FB the number of occurrences of Helmholtz motion is dis-
played (max. 9). The number of cases in which there was doubt
about the classification of Helmholtz motion is indicated by a
second number. The bold numbers indicate the lower bow-force
limit using a heuristic criterion for the definition (see text).

vB 120 143 171 205 245 293 350 419 501

5 0 0 1/1 3/1 6/1 9/1 9 9 9
10 0 0 1/1 0 3 9 9 9 9
15 0 0 6/3 7/3 3 8 9 9 9
20 0 4/1 9/2 4/1 6/2 6 8 9 9

Helmholtz motion could shed some light on the underlying
mechanisms.

4.1. Experimental procedure and analysis

The same experimental setup as described earlier was used
with the D string on the monochord. The measurements
were performed at two β values (1/25 and 1/18mm) using
the same bow velocities as before (5, 10, 15 and 20 cm/s).
For each bow-bridge distance a subset of nine bow force
values was selected, centered around the minimum bow-
force limit found in Experiment I. Each combination of
bowing parameters was measured three times. Except for
bow-bridge distance, which is not a control parameter of
the bowing machine, the measurements were performed in
random order (including the three repetitions).

The same string motion classification method as in Ex-
periment I was used with some important modifications of
the analysis procedure. For each bow stroke three inter-
vals, each with a duration of 10 nominal periods, were se-
lected for string motion classification. The intervals were
taken at predetermined positions within the steady part of
the signal. With the three repetitions this provided a total
of nine observations for each combination of bowing pa-
rameters. The intervals were analyzed in the same random
order as they were measured. The bow force value was
unknown to the experimenter when performing the classi-
fication.

4.2. Determination of lower bow-force limits

The results of the string motion classification are sum-
marized in Tables IV and V. For each bowing parameter
combination (β, vB and FB) the number of occurrences
of Helmholtz motion are displayed (max. 9). All cases of
non-Helmholtz motion were found to be multiple slipping
motion.

In some cases the string motion was classified as Helm-
holtz motion by the classification algorithm, but manual
inspection of the waveforms gave reason to doubt this
judgment. These cases are indicated by a second number
in Tables IV and V. In most of these cases the envelopes
showed slow fluctuations. Also the slip velocity was much
lower than expected for Helmholtz motion. Some exam-
ples are shown in Figure 9. In Figure 9a it can be seen
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Table V. Results of string motion classification in Experiment II
at β = 1/18.1 (see Table IV for explanations).

vB 70 84 100 120 143 171 205 245 293

5 2/2 6/1 9/1 8 9 9 9 9 9
10 2/1 8/1 9/1 9 9 9 9 9 9
15 7/1 8 9 9 9 9 9 9 9
20 9/2 9 9 9 9 9 9 9 9

that the slip phase became broader as the slip velocity de-
creased. Closer inspection revealed that the slip phase ac-
tually was composed of two slip phases. This is clearer in
Figure 9b, where an additional slip phase can be distin-
guished as it grows into the main slip. At the same time
the amplitude of the main slip decreases. Other examples
are shown in Figure 9c and d. In the last example it can be
clearly seen that there is a double slip phase. The behavior
of the string motion is not completely clear in these cases
and seems to represent some kind of long-lasting transient
behavior (further discussed in section 4.4). For this reason
string motions displaying this type of behavior were not
considered as pure Helmholtz motion.

The minimum bow force was determined for the eight
combinations of β and vB , using a heuristic criterion. The
lowest bow force at which at least eight out of the nine
selected intervals were undoubtedly classified as stable
Helmholtz motion was taken as the minimum bow-force
limit. These values, which imposes a rather strict criterion
on Helmholtz motion at the lower limit, are indicated in
Tables IV and V in bold. The obtained values were close
to the lower bow-force limits observed in Experiment I
(see Figure 4). It was noted, however, that the values for
β = 1/18 (Table V) were consistently lower than those in
Figure 4 by 2-4 grid steps, suggesting a somewhat steeper
slope for the lower bow-force limit than found in Experi-
ment I.

4.3. Dependence on bow velocity

The values of clower at each bow velocity were calculated
by multiplying the found values of minimum bow force in
Tables IV and V with β2 and taking the geometric aver-
age across β. This way of calculating clower is identical to
fitting a straight line with slope −2 in the log-log represen-
tation of bow force versus β.

In Figure 10 the estimated values of clower are plotted as
function of vB . The best linear fit together with the 95%
prediction bounds are shown as well. The figure clearly
shows that the slope was not significantly different from
zero, which indicates that there was no dependence of
the lower bow-force limit on bow velocity. The results
of Experiment II thus confirm the observations in Exper-
iment I. In contrast to Schelleng’s predictions, the exper-
iments show that the lower bow-force limit was indepen-
dent of bow velocity in the measured range 5-20 cm/s. It
can be noted that bow velocities around 20 cm/s are typical
in normal violin playing (Askenfelt [2]).
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Figure 9. Examples of string velocity waveforms in the vicin-
ity of the minimum bow force (D string). In all examples only
one slip phase per fundamental period was detected, but closer
inspection revealed the presence of an additional slip phase in-
cluded in the main slip, leading to a prolonged slip phase. It was
also observed that the maximum slip velocity was significantly
lower than the nominal slip velocity for Helmholtz motion vS
(indicated at the top of the panels by dashed lines). The slow
fluctuations in the waveform indicate transient behavior, even af-
ter one or more seconds of steady bowing.
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Figure 10. Mean values of clower versus bow velocity for the D
string in Experiment II. The best linear fit (solid line) and the
95% prediction interval (dotted lines) indicate that the minimum
bow-force limit was not dependent on bow velocity within the
measured range 5-20 cm/s.

4.4. Breakdown of Helmholtz motion at minimum
bow force

In order to gain more insight in the breakdown of Helm-
holtz motion at minimum bow force, measurements were
made using bow strokes with gradually decreasing force.
The bowing parameter profiles were similar to the ones de-
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Figure 11. Breakdown of Helmholtz motion at minimum bow
force (D string). The string velocity signal shown in (a) resulted
from a bow stroke with a slowly linearly decreasing bow force
FB (the decreasing bow force during the semi-steady part of the
bow stroke is indicated in (a) by the upper axis). The relative
bow-bridge distance β was 1/21.7. The transition from Helm-
holtz to non-Helmholtz motion is marked with a vertical dashed
line. After the transition the string motion became unstable as
can be seen from the envelope, including two slip phases which
grow and diminish alternately. The envelope shows a minimum
when both slip phases are equal in magnitude. Selected parts of
the signal, indicated by the arrows in (a), are shown in close-up
in (b), (c) and (d). The nominal slip velocity vS is indicated by
the horizontal dashed lines (vB was calculated from the uncal-
ibrated string velocity signal by taking the median of selected
stick phases of the signal in the time interval 0.85-1.75 s; vS was
calculated as vB (β − 1)/β.

scribed in section 2.4, except that the constant bow force
during the steady phase Tsteady was replaced with a slowly
linearly decreasing bow force. The initial force and the
gradient were chosen so that the string was in Helmholtz
motion in the beginning of the ‘decreasing’ (semi-steady)
phase and the minimum bow force was passed about in the
middle of this phase.

A typical transition from Helmholtz motion to multiple
slipping is shown in Figure 11. It can be clearly seen from
the envelope in panel (a) that the string motion becomes
unstable after the transition (marked by the dashed line).
Selected parts of the string velocity waveform are shown
in panels (b) to (d). The estimated values of the velocity
during stick vB and the slip velocity vS are also indicated,
showing the outline of ideal Helmholtz motion.
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Figure 12. Features used to characterize the shape of the slip
phase: the traversed distance during slip (area of the slip phase,
dslip), the maximum slip velocity vslip,max, the duration of the
slip phase Tslip and the width of the slip phase at half height
Tslip,half-width.

Before the transition Helmholtz motion was observed
as can be seen in panel (b), with stick and slip veloci-
ties corresponding to ideal Helmholtz motion. Just before
the transition (panel c) the nominal slip velocity vS was
no longer reached. Furthermore, the string motion became
more agitated during the stick phase and a tendency to
form extra slips could be observed (indicated by the ar-
rows). It could be noted that the secondary slip appears
quite early after the main slip, and not in the middle of the
stick phase as predicted by the Raman/Schelleng model.
Simulations indicate that the explanation is related to rip-
ple in friction force (see section 6.3).

At the transition an additional slip was finally formed
and started to grow, while the main slip diminished. At t ≈
2.3 s (panel d) the second slip became larger than the main
slip, which finally disappeared completely. Just before the
‘old’ main slip disappeared (at t ≈ 2.6 s) another small slip
was formed just after the ‘new’ main slip, and the process
repeated itself.

For studying the effect of corner rounding on the shape
of the slip phase the following features were determined
as indicated in Figure 12: the area of the slip phase (tra-
versed distance) dslip, the maximum slip velocity vslip,max,
the duration of the slip phase Tslip, and the width of the
slip phase at half-height Tslip,half-width. The latter measure
could be considered as the effective width of the slip phase,
mostly dependent on the position on the string where the
string velocity was measured and to a lesser degree on cor-
ner rounding.

Figure 13 shows the continuous change in the features
of the slip shape of the signal shown in Figure 11. The
maximum slip velocity vslip,max decreased with decreas-
ing bow force when the string was in Helmholtz motion
(t = 1-2 s). At the same time the slip duration Tslip in-
creased. Consequently, the displacement during the slip
phase dslip remained relatively constant, close to its nomi-
nal value until shortly before the transition. These changes
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Figure 13. Development of the slip shape during a bow stroke
with decreasing bow force extracted from the string velocity sig-
nal shown in Figure 11: (a) Maximum slip velocity (vslip,max), (b)
the two width features (Tslip and Tslip,half-width), and (c) the distance
traversed during slip phase (dslip). The minimum bow-force limit
is reached at the vertical dashed line. The nominal values of the
slip speed vS , slip duration βT1 and displacement vBT1(β−1) for
ideal Helmholtz motion are indicated by horizontal dashed lines.

could be attributed to the increasing effect of corner round-
ing with decreasing bow force. After t ≈ 1.8 s the slip
phase started to collapse, as can be seen from the pro-
nounced decrease in vslip and dslip, marking the beginning
of the breakdown of Helmholtz motion. Immediately af-
ter the transition the presence of an additional slip phase
which successively grows in prominence is clearly visi-
ble in all panels. Also the process of mutual growing and
diminishing of the co-existing slip phases is clearly visi-
ble. Even after the transition, the shape of the slip phase
continued to change due to the increasing effect of corner
rounding. For example at t = 2.4 s, the point at which the
original slip phase had disappeared almost completely, the
dominant slip phase was broader (Tslip) and its maximum
slip velocity vslip,max was lower compared to the single slip
phase just before the transition.

5. Experiment III: The role of damping

In deriving the expressions for the bow-force limits, Schel-
leng used the Raman string model, in which one string ter-
mination is fixed and the other represented by a mechan-
ical resistance R. As pointed out by Schelleng R may be
thought of as composed of two components in parallel, one
being the resistance of the body of the instrument and the
other representing the combined losses due to (a) internal

friction of the string, (b) the losses at the contact point
with the bow, and (c) the losses due to the reflection at the
upper end of the string (finger/nut).

As R appears in the Schelleng equation for the mini-
mum bow force (equation 2) it is desirable to determine
its value by experiments. This would shed light on the in-
fluence of the instrument, the string, and the stopping of
the string with the finger. Furthermore, by estimating R,
the empirically found lower bow-force limits could be di-
rectly compared with the theoretical value from Schelleng
equation (2).

For this purpose, additional measurements were per-
formed using an identical D string as in Experiment I
and II on a violin. The bow-force limits were obtained
both for open and stopped strings. The string was stopped
by clamping a piece of expanded polystyrene against the
string. The damping, which could be modified by chang-
ing the pressure of the clamp was adjusted to be similar to
the damping of a finger in normal playing conditions by
comparing the decay times of pizzicato notes.

5.1. Determination of Q values and the mechanical
resistance R

The mechanical resistance R with the string mounted on
the monochord and the violin, respectively, were deter-
mined from plucked-string signals. The plucking was per-
formed by pulling the string in the bowing direction with
a loop of a thin copper wire until it broke. The relative
plucking point β was about 1/18.

The Q value of the fundamental string mode for differ-
ent conditions (instrument, string, open/stopped) was de-
termined from the decay time τ1 of the fundamental

Q1 = πf1τ1.

where f1is the fundamental frequency. The mechanical re-
sistance R was calculated as (see Appendix)

R ≈ 2Z0f1τ1.

The values of τ1, Q1 and R (averaged across 2-4 plucks)
are displayed in Table VI for four string-instrument combi-
nations. The Q1 values of the open D strings on the mono-
chord and the violin, respectively, were rather similar (480
and 410). This is about a factor two lower than the values
measured on a rigid test bench (Jansson [20]). The agree-
ment between the Q values for the monochord and violin
indicates that the tape on the bridge and the plastic nut in-
troduced suitable losses for the lowest mode in order for
the monochord to behave ‘violin-like.’ When stopping the
string Q1 was significantly decreased to 281 (−40%). Q1

for the open E string on the monochord was about a factor
two greater than for the D string. This is most likely due to
lower internal losses in the solid E string compared to the
wound D string.
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Table VI. Damping characteristics for four string-instrument combinations. The measured decay time of the fundamental τ1 in plucked-
string signals was used to calculate Q1 and R. The estimated errors are based on the standard deviation of τ1. For the stopped D string
on the violin only one pluck was measured.

Instrument, string Z0 [kg/s] τ1 [s] Q1 R [kg/s]

Monochord, D 0.25 0.521 ± 0.016 480 ± 14 76 ± 2.3
Violin, D (open) 0.25 0.448 ± 0.017 410 ± 15 65 ± 2.5
Violin, D (stopped) 0.25 0.296 281 45
Monochord, E 0.18 0.457 ± 0.004 945 ± 8 108 ± 1.0

5.2. Dependence of bow-force limits on damping

The same method as in section 4.4 with gradually increas-
ing or decreasing bow force was used to determine cupper

and clower for different damping conditions. The force at
which breakdown of Helmholtz motion was observed was
taken as the force limit. This was done for 3-4 bow-bridge
distances (depending on the range in which the transition
could be observed) with two or three repetitions. The val-
ues of cupper and clower were obtained by multiplying the
found maximum and minimum bow forces with β and
β2, respectively, and taking the geometric mean. The val-
ues of Δµ were again obtained from the found values of
cupper, using equation (6). The values of clower according
to Schelleng were calculated from equation (7), using the
estimated values of Δµ and R in Table VI.

In Table VII the empirically determined values of cupper

and clower for the monochord and violin (open and stopped
string) are summarized. Comparing the three conditions
for the D string it can be seen that the upper bow-force
limit was not completely independent of damping as pre-
dicted by Schelleng. A tendency to increase with decreas-
ing R was observed. As R dropped to 60% from mono-
chord to stopped string condition, the upper limit increased
by 20%.

In contrast, the minimum bow force showed a strong de-
pendence on R. The observed lower bow-force limit was a
factor 1.5 higher for the open D string on the violin com-
pared with the monochord, and increased significantly to
a factor 3.4 when stopping the string. The dependence on
R was thus much stronger than the inverse proportionality
predicted by equation ((2)). For the three damping cases
measured with the D string the dependence was well de-
scribed by clower ∝ R−2.3.

Comparing the magnitude of the empirically found val-
ues of clower with the values estimated using equation (7),
it can be seen that Schelleng’s equation provided a gross
underestimation of the minimum bow force for all cases.
The empirically found lower bow-force limits were almost
one order of magnitude larger (a factor 6-11). It is not
plausible that this discrepancy could be attributed to errors
in the determination of the damping characteristics alone,
which gave reasonable values. The results mean that in
all cases the observed playable force ratio Fmax/Fmin was
much smaller than the theoretical value of 4Rβ/Z0.

In section 3.7 it was observed that the measured lower
bow-force limits of the D and E strings differed more
than predicted by the change in Z2

0 . Taking the different

values of R of the D and the E string into account (76
and 108 kg/s) the Z2

0/R ratio becomes 0.36, which coin-
cides exactly with the observed −64% shift of the lower
limit. Taking torsion into account the predicted decrease
amounts 57%, which is slightly less in agreement with the
observed shift.

6. Discussion

6.1. Empirical Schelleng diagrams

In the experiments a number of aspects of Schelleng’s pre-
dictions of upper and lower limits of bow force have been
examined. Generally, a rather good agreement between
theory and observations was found. Most discrepancies
were encountered in the determination of the lower bow-
force limit, in particular the dependence on bow velocity.
In contrast to Schelleng’s predictions the lower limit was
found to be independent of bow velocity, and a follow-up
experiment was run to verify the results. Some method-
ological issues are of particular interest to consider.

The experiments gave a clear indication of the fact that
there are some principal difficulties in the classification
of the string motion in the vicinity of the minimum bow
force. As shown in section 4 there is a gray zone between
clear cases of Helmholtz motion and multiple slipping,
characterized by an alternation between these two types of
motion, compound slip phases (composed of two neigh-
boring slip phases), and long transients. This means that
the determination of the minimum bow force will always
be dependent on criteria set by the experimenter, either in
manual judgments of individual cases, or coded in an auto-
matic classification algorithm. In this study a combination
of manual judgment guided by an interactive classification
algorithm was used in order to arrive at highest possible
confidence in the classification. Each decision was based
on data on the string waveform compiled by a classifica-
tion algorithm into a ‘decision chart’ which gave charac-
teristic patterns for the different types of string motion. In-
fluence of the experimenter’s prejudices was reduced as
far as possible by hiding information about the combina-
tion of bowing parameter values. In this way consistency
in the judgments was assured at the same time as each clas-
sification was checked for being reasonable.

The performance of the bowing machine and the influ-
ence on the string motion is an essential aspect. As de-
scribed in section 2 there were some fluctuations in bow
force during a bow stroke. Accurate control of bow force
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Table VII. Bow-force limits and estimated standard errors for the four string-instrument combinations in Table VI at vB = 10 cm/s. The
predicted values of clower according to Schelleng, calculated using equation (7), and the estimated values of R and Δµ are displayed in
the last column.

Instrument, string R [kg/s] cupper [mN] Δµ clower [mN] clower, Schelleng [mN]

Monochord, D 76 86 ± 8 0.58 0.47 ± 0.04 0.070
Violin, D (open) 65 91 ± 8 0.55 0.69 ± 0.04 0.088
Violin, D (stopped) 45 103 ± 2.4 0.49 1.56 ± 0.13 0.143
Monochord, E 108 70 ± 2.3 0.52 0.17 ± 0.02 0.029

is a difficult problem due to the combination of relatively
heavy bow and low bouncing frequency against the string.
The relative amplitude of the fluctuations was rather large
at low forces, and at the lowest target force (49mN) the
relative RMS fluctuation reached 20-30%. However, the
relative error decreased rapidly with increasing bow force
and for a majority of the measurements (85% with target
values above 100mN) the fluctuations were well below
10%. For comparison, Galluzzo [5] using a more com-
plex control strategy and more powerful bowing machine
to play a cello bow reported a maximum fluctuation error
in bow force of 3%. However, these values cannot be di-
rectly compared as Galluzzo measured Guettler diagrams
with accelerating bow at higher bow forces (min. 0.5 N).

The effect of the fluctuations, which would have the
largest influence on the determination of the lower bow
force limit, is not exactly known. It could be speculated
whether the surprising result that the lower bow force limit
was independent of bow velocity is related to unsatisfac-
tory control of bow force. Admittedly, it is possible that the
pattern of Helmholtz motion could be disturbed by fluctu-
ations in force when approaching the lower limit, which
in turn would lead to an overestimation of the minimum
bow force. Such an effect would be particularly evident
for the lowest forces at large β values. The measurements
showed, however, no indications of this type of artifact.
The data indicate a linear slope of about 1/β2 for the lower
limit throughout the β range, without a noticeable upward
curvature in the low forces at large β values. Furthermore,
clear differences in the levels of minimum bow force could
be observed between the D and E strings, both showing the
expected slope of about 1/β2. All together these observa-
tions indicate that the control of bow force was accurate
enough for the purposes of the current study. In particular,
it can be concluded that bow-velocity dependent changes
in the lower bow-force limit should have been observed if
there were any.

6.2. Maximum bow force

The upper bow-force limits determined in this study are
in good agreement with measurements of Schumacher
[4], who reported values of cupper for a number of violin
D strings of different types in the range of 75-109mN at
vB = 10 cm/s on a violin (cf. 91mN in the current study).2

2 The maximum bow forces reported by Schumacher were expressed in
normalized units. The values of cupper were calculated from equation (5)
in [4]

For the two plain steel E strings in his study, he found max-
imum bow forces corresponding to values of cupper of 88
and 98mN. These values are somewhat higher than the
value of cupper = 70mN (monochord) in the current study.

For the determination of Δµ it is important to take tor-
sion into account. The change is proportional to the ratio
Ztot/Z0, which lowered the estimated values for the D and
E string about 30% and 20%, respectively.

An interesting observation was that the slope of the up-
per bow-force limit in the Schelleng diagram increased
with increasing bow velocity, approaching the theoretical
value of −1. This could be attributed to a variation in the
friction coefficient delta Δµ with bow velocity by fitting
the modified Schelleng equation (based on a hyperbolic
friction curve) to the data. This functional behavior of Δµ
gave a better fit than the assumption of a constantΔµ, indi-
cating that the variation in Δµ with bow velocity is clearly
reflected in the empirical Schelleng diagrams.

6.3. Minimum bow force

Regarding the minimum bow force the experiments
showed some marked deviations from Schelleng’s theo-
retical description. Firstly, there was no significant de-
pendence of minimum bow force on bow velocity within
the measured range of bow velocities (5–20 cm/s). Sec-
ondly, it was shown in section 5 that the dependence of
the minimum bow force on damping (represented by the
estimated value of R) was much stronger than inversely
proportional. Furthermore, it was shown that Schelleng’s
equation for minimum bow force (2) lead to a gross un-
derestimation of the lower bow-force limit, using the esti-
mated values of R.

All together, these observations put the mechanism
causing breakdown of Helmholtz motion at minimum bow
force proposed by Schelleng severely into question. The
Schelleng equations are based on the assumption that the
impedance of the bridge termination is purely resistive,
which means that corner rounding and ripple are ignored.
However, as suggested by Woodhouse [3] ripple might be
an important source of perturbation for the breakdown of
Helmholtz motion. This can also be seen in Figure 11 (c),
which shows the ‘seeds’ of an additional slip phase.

In Raman’s analysis the reflection functions are of the
Dirac-delta type (giving Q values proportional to the har-
monic numbers). One useful feature here is a friction force
rising in steps from a minimum value equal to FBµd dur-
ing the slip interval to a maximum occurring somewhere
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Figure 14. Periodically repeating patterns of friction force sim-
ulated with hyperbolic friction model (not including torsion and
dispersion). The upper panel shows the patterns resulting from
the Raman model, on which Schelleng based his calculations.
There is a proportionality between bow velocity (vB) and the
force range which determines the minimum bow force. The lower
panel shows the pattern resulting from the same bowing param-
eters applied to a model with narrow reflection functions (Q-
values fading with increasing frequency). The slipping intervals
vary in length. The resulting ripple force range (excluding tran-
sitional spikes) at vB = 20 cm/s is a mere 17% wider than at
5 cm/s, as opposed to 300% with the Raman model. The range
of periodic friction-force variation is indicated by the double ar-
rows.

close to the middle of the stick interval, when the string
is excited at an integer-ratio position. Raman showed this
periodic change of friction to be proportional to bow ve-
locity. However, with any kind of slightly more realistic
damping, the step-like force buildup would be replaced
by a force ripple, with maxima most likely to occur at
the instance βT1 before the stick-slip transition (caused
by reflections from the nut), or βT1 after the slip-stick
transition (caused by reflections from the bridge). Simula-
tions show that these are due to rounded-corner sharpening
(‘echos’), a feature not present in the Raman model. The
ripple amplitudes are dependent (although not linearly) on
the length of the slip interval, friction-coefficient delta, and
damping properties, but are not directly related to bow ve-
locity. At minimum bow force a certain degree of subhar-
monic interference [21] often contributes to further blurri-
ness. It is thus hard to see how the Raman model could be
useful for estimation of minimum bow force.

Figure 14 shows the effect of Raman damping versus a
moving-average type of damping. The range of periodic
friction-force variation, equal to FB (µs − µd), determines
the minimum bow force in all cases. A clear difference
in the behavior of these damping models with respect to

bow velocity can be observed. As opposed to the Raman
model (upper panel), which shows a proportional relation
between minimum bow force and bow velocity, the model
with narrow reflection functions shows a mere 17% in-
crease of minimum bow force when bow velocity is in-
creased from 5 to 20 cm/s. More generally, simulations
showed that the influence of bow velocity on minimum
bow force is dramatically reduced for large values of β,
and shows only limited effects (never proportionally) at
smaller β. Since both the empirical results and simulations
suggest that Schelleng’s calculations for minimum bow
force might be based on faulty assumptions, these issues
are certainly worth further investigation.

Closing the discussion of the lower limit of bow force
it can be speculated about the significance for the player.
From the performer’s point of view the lower limit in bow
force may not be as critical as the upper. A low bow force
in the vicinity of the lower limit is typically used for pp
playing at relatively large values of β. For such cases a
certain amount of multiple slipping in the waveform is not
easily perceptible, particularly not in orchestral playing.
In contrast, the player needs to have a good feeling for the
margins to the upper bow force limit when exploring the
ff range, notably for long notes played with a low bow ve-
locity. Here, the amount of pitch flattening and noise con-
tent are helpful by giving continuous indications of how
far away the disastrous switch-over to raucous motion ac-
tually is.

7. Conclusions

In this study bow-force limits for bowed violin strings
were systematically measured for wide ranges in bow-
bridge distance and bow force, covering a substantial part
of the ranges used in normal violin playing (β values 1/30-
1/6, bow forces 49-3000mN). In the measurements a nor-
mal violin bow was used to play a monochord and a vio-
lin. The bow velocity and the bow force were controlled
by a bowing machine. The results were compiled in em-
pirical Schelleng diagrams for four bow velocities (5, 10,
15, 20 cm/s).

Summarizing the results, it was found that there was
generally a good qualitative agreement between the em-
pirical Schelleng diagrams and the properties predicted
by Schelleng. There was a continuous playable region
in the central part with Helmholtz motion (‘Schelleng’s
triangle’), surrounded by regions of raucous motion and
anomalous low frequencies (ALF) at higher bow forces
and multiple slipping at lower forces.

The upper and lower bow-force limits for Helmholtz
motion formed approximately straight lines in the log-log
Schelleng diagrams. The slope of fitted upper limits was
found to be less steep than the predicted value of −1,
in particular for low bow velocities. A better agreement
with measurements was reached by taking the variation in
friction-coefficient delta with bow velocity into account.
This was done by incorporating a hyperbolic friction curve
in the model (modified form of Schelleng’s equation). The
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magnitude of the upper bow force was proportional to bow
velocity in accordance with predictions. Damping at the
string terminations influenced the upper limit to some ex-
tent, which is not in line with Schelleng’s predictions.

The lower bow-force limit showed no significant devia-
tion from the predicted slope of −2. However, three other
results did not correspond with predictions at all: (1) the
lower limit was not dependent on bow velocity, (2) the
magnitude of the lower bow force was an order of mag-
nitude higher than predictions, and (3) the dependence
of damping was far stronger than inversely proportional.
These findings suggest that Schelleng’s derivation of the
lower limit for Helmholtz motion was not based on cor-
rect assumptions, a conclusion confirmed by simulations
with different types of reflection functions.

The experiments showed that the transition from Helm-
holtz motion to multiple slipping at the lower limit is not
well defined but covers a gray zone in which the classifica-
tion of string motion is ambiguous. Observations show that
as bow force is reduced the slip phase becomes distorted
and additional small slips start to grow and replace the
main slip in a repeated pattern before complete breakdown
of Helmholtz motion occurs. Simulations indicate that the
mechanisms involved include effects of corner rounding
and resharpening at release which give rise to substantial
ripples in friction force. The magnitude of these ripples
is not reduced in proportion to bow velocity. Such effects
were not taken into account by Schelleng, who based his
derivation on the well-behaved friction force in the Raman
model. This model predicts a periodic variation in force
with a magnitude directly proportional to bow velocity.

Appendix

Calculation of the mechanical resistance R

The formula for calculating the mechanical resistance R
from the decay time τ1 of the fundamental string mode
according to Raman’s string model can be derived as fol-
lows.

The reflection factor of the bridge termination of the
string is given by

λ =
Z0 − R

Z0 + R
, (A1)

where Z0 is the characteristic wave impedance (cf. [8],
equation 5.21). The relative amount of reflected energy per
fundamental period T1 (one lossy reflection) is

|λ|2 = e−2T1/τ ,

where τ the decay time, so that

τ =
T1

ln (1/ |λ|) . (A2)

According to the Raman model the decay times of all
string modes are equal, which is not in agreement with
observations of real strings. For the calculation of R only

the fundamental is considered as it dominates the decay.
For a quasi-fixed termination (R > Z0) the combination
of equations (A1) and (A2) yields

R = Z0
eT1/τ1 + 1
eT1/τ1 − 1

,

which can be written as

R = Z0 coth(T1/2τ1).

For small arguments (τ1 � T1) this can be approximated
by

R ≈ 2Z0τ1
T1

, (A3)

which is identical to [8], equation (4.32a).
Using the relation between Q and τ

Q = πfτ,

where f is the mode frequency, theQ value can be written
as

Q =
π

ln (1/ |λ|) ,

and
R ≈ 2Z0Q

π
.

For an alternative derivation, see [22], equation (2.45)
case (1), for R � Z0.3
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