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An analytic, small-deflection, simplified model of the modern violin bow is introduced to describe

the bending profiles and related strengths of an initially straight, uniform cross-section, stick as a

function of bow hair tension. A number of illustrative bending profiles (cambers) of the bow are

considered, which demonstrate the strong dependence of the flexibility of the bow on longitudinal

forces across the ends of the bent stick. Such forces are shown to be comparable in strength to criti-

cal buckling loads causing excessive sideways buckling unless the stick is very straight. Non-linear,

large deformation, finite element computations extend the analysis to bow hair tensions comparable

with and above the critical buckling strength of the straight stick. The geometric model assumes an

expression for the taper of Tourte bows introduced by Vuillaume, which is re-examined and gener-

alized to describe violin, viola and cello bows. A comparison is made with recently published meas-

urements of the taper and bending profiles of a particularly fine bow by Kittel.
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I. INTRODUCTION

Many string players believe that the bow has a direct

influence on the sound of an instrument, in addition to the

more obvious properties that control its manipulation on and

off the string. It is, therefore, surprising that until relatively

recently little research has been published on the elastic and

dynamic properties of the bow that might affect the sound of

a bowed instrument.

The present paper investigates the influence of the taper

and bending profile on the elastic properties of the bow,

which could influence the quality of sound produced by the

bowed string via their influence on the slip-stick generation

of Helmholtz kinks circulating around the vibrating string.

The influence of the taper and camber on the flexibility of

the bow will also affect the vibrational modes of the bow, to

be described in a subsequent paper.

Two scientifically and historically important mono-

graphs on the bow were written in the 19th century. The first,

by François-Joseph Fétis,1 was commissioned and published

in 1856 by J. B. Vuillaume (1798–1875), the leading French

violin maker and dealer of the day. The monograph not only

describes and celebrates the instruments of the great Cre-

monese violin makers, but also gives an account of Vuil-

laume’s own historical and scientific research on the

“modern” violin bow. This had relatively recently been

developed by Francois Xavier Tourte (1750–1835), who was

already viewed as the Stradivarius of bow making.

In 1896, Henry Saint-George2 updated information on bow

makers and described subsequent research on the bow. In addi-

tion to translating Vuillaume’s earlier research, he describes

later research and measurements by the eminent Victorian

mathematician W. S. B. Woolhouse, FRS (1809–1893)—the

eponymous owner of the 1720 Woolhouse Strad—who colla-

borated with the distinguished English bow maker James

Tubbs (1835–1921). Woolhouse3 reflected the views of many

modern performers in believing that the purity of the vibra-

tions of the bow were as important as the vibrations of the

violin itself. Both monographs cite expressions for the taper

of fine Tourte bows, but neither indicate how such formulae

were derived.

There was then a lengthy hiatus in serious research on

the bow until the 1950’s. Two interesting papers on the prop-

erties of the bow were then published in early Catgut Society

Newsletters by Maxwell Kimball4 and Otto Reder.5 This

was followed in 1975 by a pioneering theoretical and experi-

mental paper on the dynamic properties of the bow and

stretched bow hair by Robert Schumacher.6

Subsequently, Anders Askenfelt7–9 at KTH in Stock-

holm published several important papers on the bow, more

recently in collaboration with the distinguished double-bass

virtuoso and teacher Knut Guettler.10,11 Their later publica-

tions are mainly devoted to the influence of the bow-string

interaction on the sound of an instrument. George Bis-

singer12 investigated the mode shapes and frequencies of the

bow plus tensioned bow hair and highlighted the importance

of the low-frequency bouncing modes, especially for short

bow strokes. Such modes have subsequently been exten-

sively investigated by Askenfelt and Guettler.10

The present paper is largely devoted to models that

describe the static elastic properties of the bow, which pro-

vide the theoretical and computational framework to analyze

their dynamic properties, as discussed in a subsequent paper.

The paper is divided into three main sections followed

by a discussion of the results and a summary.

The first section introduces a small deflection, analytic

model for the bending modes of a simplified constant cross-

sectional area bow. This illustrates the dependence of bow

strength (the term used by players to describe the stiffness

against bending) on the initial bending profile (camber) and

hair tension. Three illustrative cambers are considered equiv-

alent to bending profiles generated by external forces and

couples across the ends of the initially straight stick.
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The second section revisits and generalizes Vuillaume’s

geometric model and related mathematical expression for the

tapered diameter of Tourte bows along their lengths. This

taper was chosen for the large deformation, non-linear, finite

element analysis described in the third section. These compu-

tations extend the analysis to longitudinal tensions between

the ends of the bent stick approaching and above the critical

buckling load of the straight stick �75 N, comparable in size

to typical playing tensions of �60 6 5 N (Askenfelt7).

For small bending profiles, the finite-element computa-

tions reproduce the predictions of the simple analytic model

remarkably well, justifying the most important simplifying

assumption of the analytic model, but extending the predic-

tions to describe the asymmetries introduced by the tapered

stick diameter and more realistic geometries for the frog and

head of the bow.

II. A SIMPLE BOW MODEL

A. Introduction to bending of bow stick

The one-dimensional in-plane bending of a tapered bow

stick is governed by the bending equation,

EI sð Þ d
2y

ds2
¼ M sð Þ; (1)

where E is Young’s modulus along the length of the stick

and y and s are the deflections of and distances along the

neutral axis. The bending moment M(s) generated by couples

and forces acting on the stick will, in general, vary with posi-

tion along the length of the stick.

I(s) is the second moment of the cross-sectional area

Ð
area y2dxdy;

which for a constant radius a stick is pa4/4. For a stick with

octagonal cross-section, I¼ 0.055 w4, where w is the width

across opposing flat surfaces. For the short, quasi-elliptical,

transitional cross-section between the stick and head of the

bow, I¼ pab3/4, where b is the larger, in-plane, semi-axis.

In general, the bending profile will be a function of both

the bending moment along the length of the stick and its local

radius. When equal and opposite couples are applied across

the ends of a constant cross-sectional radius stick, it will be

bent into the arc of a circle with radius of curvature

R(s)¼ (d2y/ds2)�1� (d2y/dx2)�1, where the approximation

ignores second-order, non-linear, corrections in (dy/dx)2. The

curvature of a tapered stick will therefore vary along its

length—inversely proportional to the fourth power of its

diameter.

For a tapered Tourte bow, the diameter of the stick

changes from 8.6 mm at the frog end of the bow to 5.3 mm

at the tip end (Fétis1). When opposing couples are applied

across its ends, the curvature will therefore be almost seven

times larger at the upper end of the bow than near the frog.

Graebner and Pickering13 suggest that the couple-induced

bending profile is the optimum camber for a high quality

bow. This suggestion will be assessed in the light of the

computations described in this paper.

In the following section, the bending of the bow based

on a simplified model similar to that used by Graebner and

Pickering is considered. The bow is of length ‘ and constant

cross-sectional radius a, with perpendicular rigid levers of

height h at each end representing the frog and the head of the

bow, between the ends of which the hair is tensioned.

For small bending angles h, the usual small deflection

approximations with x¼ s measured along the length of the

initially straight stick can be made: h ’ tan h ’ sin h
’ dy=dx; cos h ’ 1 and R(s)¼ (d2y/dx2)�1.

B. An analytic model

A linear analysis is assumed similar to that used by Tim-

oshenko and Gere14 in Chapter 1 of their classic textbook on

The Theory of Elastic Stability. This provides an invaluable

introduction to the bending of straight and bent slender col-

umns like the violin bow, under the combined influence of

external moments and both lateral and longitudinal forces.

First consider the bow stick bent by equal and opposite

couples and forces of magnitudes C and F across its ends,

promoting the upward deflection illustrated in Fig. 1. Imag-

ine a virtual cut across the bent bow at a height y. In static

equilibrium, the applied bending couples and forces acting

on the separated left-hand section of the stick must be bal-

anced by equal and opposite bending moments and shearing

forces exerted on it by the adjoining length of the stick. The

bending moment along the length of the stick must therefore

vary as CþFy, resulting in a curvature along the length sat-

isfying the bending equation

EI
d2y

dx2
¼ � Cþ Fyð Þ; (2)

which may be written as

d2y=dx2 þ k2y ¼ �C=EI; (3)

where

k2 ¼ F=EI: (4)

The influence of longitudinal force on bending profiles of

the bow has often been overlooked, though it has a very im-

portant influence on the flexibility. This is used to advantage

in the Spiccato carbon fibre bow15 developed by Benois

Rolland, which has a wire along the central axis of the hol-

low stick, which can be tensioned to adjust the camber and

flexibility to suit the player’s preference.

Because the displacement must be symmetrical and zero

at both ends, the solutions can be written as

FIG. 1. Equilibrium of bow bent by equal and opposite couples and forces

across its ends.
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y ¼ A sin kx sin k ‘� xð Þ (5)

¼ C

F

cos k‘=2� cos k ‘=2� xð Þ½ �
cos k‘=2

; (6)

which satisfies the boundary condition d2y/dx2¼�C/EI at

both ends (y¼ 0).

The maximum deflection at the mid-point is given by

y‘=2 ¼
C‘2

8EI

2 1� cos uð Þ
u2 cos u

¼ C‘2

8EI
k uð Þ (7)

where u ¼ k‘=2 ¼ ‘=2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
F=EI:

p

In the above expression, k(u) is essentially a force-

dependent factor amplifying the deflection that would have

resulted from the bending moment alone, given by the pre-

factor in Eq. (7).

The deflection becomes infinite when k‘/2¼ p/2. This

corresponds to a force FEuler¼EIp2/l2, which is the maxi-

mum compressive load that the straight stick, with hinged

supports at both ends, can support without buckling.

For compressive forces F well below the critical limit,

k uð Þ � 1

1� F=FEuler
; (8)

an approximation that differs from the exact expression by

less than 2% for compressive loads below 0.6 of the Euler

critical value.

In practice, the bending always remains finite, even for

forces well beyond the critical load. This is because, as the

bending increases, the two ends of the stick are forced

towards each other. The external force then does additional

work introducing non-linear terms in the deflection energy

analysis, which limits the sideways deflection. This was al-

ready understood and mathematical solutions obtained for

deflections above the critical load by Euler and Lagrange in

the late 18th century (see Timoshenko16 History of Strength
of Materials, pp. 30–40).

The neglect of the changes in length between the two

ends of the bent stick, limits the above linear analysis to

compressive forces significantly smaller than the critical

buckling load. Later non-linear finite element analysis shows

that the critical buckling tension for a tapered violin stick is

around 75 N for pernambuco wood with along-grain elastic

constant of 22 GPa. This is only slightly larger than typical

bow hair tensions of around 60 N (Askenfelt7).

Analytic expressions for large deflection bending were

published by Kirchhoff17 in 1859 based on a close analogy

between the bending of a slender column and the non-linear

deflections of a simple rigid pendulum. The analytic solutions

of what is known as the elastica problem involve complete
elliptic integrals (see Timoshenko and Gere,14 art 2.7, pp.

76–81). Alternatively, as in this paper, large deflection, non-

linear finite element computations can be used to describe such

bending, which also allows the influence of the tapered stick

and geometry of the frog and head of the bow to be included.

A similar amplification factor applies to any initial side-

ways bending of the bow stick (Timoshenko and Gere,

art 1.12). This explains why bows with only a slight initial

deviation from sideways straightness become virtually

unplayable on tightening the bow because of excessive side-

ways bending. In contrast, the downward curvature of the

modern bow is in the opposite sense to that produced by the

bow hair tension, which inhibits in-plane instabilities.

When the bending moments are reversed, the sense of

deflection is simply reversed. However, reversing the direc-

tion of the longitudinal load, F ! �F, has a more profound

effect, with k2¼F/EI now becoming negative. Because

cos ikx! cosh kx, the deflections now vary as

y xð Þ ¼ C

F

cosh k‘=2� cosh k ‘=2� xð Þ½ �
cosh k‘=2

: (9)

There is no longer a singularity in the denominator. Further-

more, the extensive load now tends to decrease any bending

initially present or induced by external couples or forces.

C. Setting of initial camber of bow

In practice, the bow maker adjusts the camber of a bow

by bending the stick under a gentle flame. This locks in inter-

nal strains equivalent to those that could have been provided

by an equivalent combination of couples and forces applied

across the ends of the stick or by distributed lateral forces

along its length. Timoshenko and Gere,14 §1.12, provide sev-

eral examples of the use of such an approach to describe the

bending of an initially curved bar.

Bow makers usually assume that a correctly cambered

bow should pull uniformly straight along its length on tight-

ening the bow hair (Rolland18). They then carefully adjust

the bending profile to correct for changes in elastic proper-

ties and uneven graduations in taper along the length of the

bow. The strength of the bow—the way the stick straightens

on tightening the bow hair or deflects on applying downward

pressure on the string—will be shown to be strongly related

to the camber. Initially, three theoretical profiles will be con-

sidered identical to those produced by various combinations

of forces and couples across the ends of an initially straight

uniform diameter stick.

The earliest suggestion for the most appropriate camber

of the modern bow stick was made by Woolhouse3:

Let a bow be made of the proper dimensions, but so as
to be perfectly straight; then by screwing it up in the
ordinary way, it would show, upside down, the exact
curve to which other bows should be set.

This profile will be referred to as the mirror profile, as it is

the mirror image of the upward bending profile of the ten-

sioned straight stick when inverted. A bow with such an ini-

tial camber would indeed straighten uniformly along its

length on tightening.

John Graebner and Norman Pickering13 have recently

proposed that the ideal camber would be one generated by

equal and opposite couples across the ends of the initially

straight stick. Their measurements provide persuasive evi-

dence that this might indeed be true for a number of fine

bows. This will be referred to as the couple profile. Although

such a stick with a uniform diameter would straighten
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uniformly along its length, this is no longer true for a tapered

stick. Moreover, such a stick must have a high elastic con-

stant, if it is not to straighten prematurely before a satisfac-

tory playing tensions is achieved.

A profile referred to as the stretch profile is also consid-

ered equivalent to that produced by an outward force

between the ends of the frog and head of the bow, in the op-

posite direction to the hair tension. It will be shown that a

bow with such a bending profile would also straighten uni-

formly along it length on tightening and would be signifi-

cantly stronger (less flexible) than bows with mirror or

couple bending profiles.

The equivalent couples and forces used to generate the

above three bending profiles are illustrated in Figs. 2(a)–(c),

while Figs. 2(d)–(f) illustrate the additional forces and couples

generated by the hair tension. These are the only bending

profiles that can be generated by couples and forces across the

ends of the stick. However, profiles of any desired shape can

always be generated by appropriate lateral forces along the

length, with the associated bending moments giving the

required local curvature [(Timoshenko and Gere14), §1.12].

D. Influence of hair tension on bending profile

The deflections of the stick are assumed to be well within

the elastic limits of the pernambuco wood used for the stick.

The net forces and couples acting across the ends of the stick

are therefore the sum of the equivalent forces 6F and 6C
used to set the untensioned camber plus the forces 6T and

couples 6hT from the tension of the hair stretched between

the end levers representing the frog and head of the bow.

However, the deflections from the two sets of forces and cou-

ples are not necessarily additive because of the non-linear

relationship between the couple-induced deflections and the

compressive or extensive loads along the length of the stick.

For the mirror and couple bending profiles under tension,

the longitudinal forces are compressive (tensile), so the deflec-

tions under tension are given by Eq. (6) with C¼ h(F� T)

and longitudinal force Fþ T for the mirror profile, so that

ymirror Tð Þ ¼ F� T

Fþ T
h

cos k‘=2� cos k ‘=2� xð Þ½ �
cos k‘=2

; (10)

with k2¼ (FþT)/EI, and

ycouple Tð Þ ¼ M � hT

T

cos k‘=2� cos k ‘=2� xð Þ½ �
cos k‘=2

; (11)

with k2¼T/EI for the couple profile.

For the stretch profile, the net longitudinal forces

(F> T) across the ends of the stick are extensive, so that

ystretch Tð Þ ¼ h
cos k ‘=2� xð Þ � cos k‘=2½ �

cos k‘=2
; (12)

with k2¼ (F�T)/EI.
The camber of the untensioned bow is given by letting

T ! 0. The resulting cambers for above three bending pro-

files are shown in Fig. 3, where the equivalent couples C and

forces F setting the initial camber have been chosen to give

the cited mid-point deflections. For relatively small deflec-

tions, the three bending profiles are almost indistinguishable.

However, for all deflections, the couple bending profile has a

slightly larger curvature towards the ends than the mirror
profile. As the mid-point deflection increases the stretch pro-

file becomes progressively flatter in the middle of the bow,

as the maximum deflection given by Eq. (12) can never

exceed the lever height h, requiring a much larger curvature

towards the ends of the bow.

The solid lines in Fig. 4 plot the mid-point deflections as

a function of the generating forces and couples used to set the

mirror, couple and stretch profiles for our simple bow model.

Note that, although the stresses and strains in the stick are

assumed to be elastic, the deflections of the mirror and stretch
profiles are highly non-linear. This is a geometric effect aris-

ing from the non-linear amplification of bending profiles by

the longitudinal forces as the bending changes [Eq. (2)].

In plotting Fig. 4, a value of EI has been chosen to give

a critical buckling load of 78 N, at which force the analytic

expression for the mirror profile becomes infinite, unphysi-

cal and changes sign—indicated by the vertical line. Using

this value as the only adjustable parameter, the analytic

small deflection predictions for all three bending profiles are

almost indistinguishable from the open symbols plotting the

FIG. 2. (a)–(c) illustrate the mirror, couple and stretch bending profiles generated by equivalent couples and compressive or extensive forces between the

ends of the bent stick. (d)–(f) illustrate the additional forces and couples generated by the hair tension T between frog and tip of the bow, with both sets of

forces and couples defining the net forces and couples across the ends of the stick determining its bending profile.
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maximum downward deflections of the tapered Tourte bow

computed in Sec. III. Such computations include the changes

in geometry, hence bending moments, as the bending

increases.

The excellent agreement between the analytic and our

later non-linear finite element computations justifies many

of the approximations made in the small deflection analy-

sis and justifies its use to illustrate the most important

qualitative static and dynamic properties of the bow.

Nevertheless, finite-element computations are still required

to account for the asymmetric properties associated with

the taper and different dimensions of the frog and head of

the bow.

Bows with the above bending profiles will straighten

when the couples acting on the stick from the hair tension

across the frog and tip of the bow are equal and opposite

those used to generate the initial untensioned camber. A bow

with the mirror camber and a downward deflection of 16

mm would therefore straighten with a hair tension of 30 N,

only about half the normal playing tension of around

60 N(Askenfelt7). A Tourte bow with a couple bending pro-

file would also straighten before a playing tension of 60 N

could be achieved, unless its elastic constant was signifi-

cantly higher than 22 GPa or it had a thicker diameter to

increase the critical buckling load. In contrast, a bow with a

pure stretch bending profile could support very large hair

tensions without straightening appreciably. Bows of interme-

diate strength could be produced by setting a camber equiva-

lent to the bending profile produced by a combination of a

couple across the bow stick and a stretching force between

the frog and head of the bow.

Whatever profile is used by the maker to set the in-

plane rigidity, the critical buckling tension of the straight

stick must always be significantly larger than the required

playing tension, to avoid major problems from out-of plane

buckling.

The added strength of the stretch profile arises from the

increased curvature at the ends of the stick, which in a real

bow compensates for the loss in bow strength from the reduc-

tion in diameter towards the tip. In practice, the bow maker

can choose any bending profile they wish and are not con-

strained to the specific examples considered here. However,

for a tapered bow, only the mirror or stretch bending profiles

will pull uniformly straight on tightening the bow hair.

III. THE TAPERED BOW

The taper used in our finite element computations is

based on Vuillaume’s algebraic expression describing his

measurements on a number of fine Tourte bows. Vuillaume

noted that all such bows were tapered in much the same

way, with the stick diameter decreasing by a given amount

at almost exactly the same positions along their length. As

cited by Fétis,1 he therefore devised a geometric construc-

tion, so that these positions

might be found with certainty - by which, consequently,
bows might be made whose condition should always be
settled à priori.

Fétis1 gives the following mathematical expression,

d xð Þ ¼ �6:22þ 5:14 log xþ 175ð Þ; (13)

derived by Vuillaume from his geometric model. This gives

the tapered diameter d as a function of distance x from the

end of the bow stick, with all dimensions in mm.

FIG. 4. (Color online) The solid lines represent the bending couples C¼Fh
and forces F required to set the mirror, couple and stretch profiles as a func-

tion of the mid-point deflection of the 70 cm long, uniform diameter, initially

straight stick with h¼ 2 cm levers on its end, for an assumed critical buckling

load of �78 N indicated by the vertical line. The open symbols lying almost

exactly on top of the solid lines plot the maximum deflection at around 30 cm

from the end of the tapered Tourte stick evaluated using non-linear finite-ele-

ment software assuming a uniform elastic constant of 22 GPa.

FIG. 3. (Color online) The mirror, couple and stretch bending profiles for

mid-point deflections of 0.5, 0.7 and 0.9 the end-lever height h. The model

assumes an initially straight bow stick of length 70 cm, with uniform cross-

sectional area and h¼ 2 cm.
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Unfortunately, no explanation appears to have been

given for either the geometric model or mathematical

expression derived by Vuillaume and later by Woolhouse3

from an independent set of measurements on Tourte violin,

viola and cello bows.

The Vuillaume geometric model and related mathemati-

cal expression have therefore been re-derived and justified.

The later Woolhouse expression, as originally correctly cited

in mm, is shown to be virtually identical to Vuillaume’s ear-

lier expression.

The geometric construction developed by Vuillaume is

illustrated in Fig. 5 together with a photograph of a fine

Tourte bow and a plot of the tapered diameter on which the

geometric model and associated mathematical expression

were based.

The bendable length of stick from the frog end to the

head of the Tourte bow was measured by Vuillaume as

‘¼ 700 mm, of which the first 110 mm had a constant diam-

eter of 8.6 mm. The remaining 590 mm was tapered towards

the upper end with a diameter of 5.3 mm. Vuillaume noted

that the tapered section could be divided into 11 sections

marking the lengths over each of which the diameter

decreased by 0.3 mm, with the length of each section

decreasing by the same fraction b, as illustrated schemati-

cally in Fig. 5. The decrease in diameter over consecutive

sections is therefore described by an arithmetic progression,

while the decrease in section length is described by a geo-

metric progression. This forms the basis of Vuillaume’s geo-

metric model and related mathematical expression.

The model is generated by first drawing a base line of

length 700 mm to represent the length of the stick. At the

frog end of the bow a vertical line is raised of height

A¼ 110 mm equal in length to the initial constant radius sec-

tion of the bow. At the other end of the base-line a second

vertical line of height B¼ 22 mm is raised and a straight line

drawn between their ends intercepting the axis a distance

175 mm (‘/4) beyond the end of the stick.

A compass was then used to mark out 12 sections along

the base line. With the point of the compass at the origin of

the base line, a point was first marked off along the base line

equal to the height of the first perpendicular representing the

initial 110 constant diameter section of the stick. At the end

of this section, a new vertical line was raised to intersect the

sloping line. Using a compass, this length was added to the

first section. The process was then repeated until the remain-

ing sections exactly fitted into the length of the bow stick.

The height of the 22 mm upright at the end was chosen so

that the fractional decrease in length b¼ 1� (A�B)/700

¼ 0.874 between successive sections had the correct value to

allow this perfect fit. Apart from the initial, constant-

diameter, section, each subsequent section marked the lengths

over which the diameter decreased by 0.3 mm (3.3 mm in

total).

Vuillaume presumably determined the length B by trial

and error. Mathematically, this requires the sum of the lengths

A
P11

o bn ¼ 700 mm;

with a ratio of lengths B/A¼ b12¼ 22/110¼ 1/5. This gives

the above value for b with

A
P11

o bn ¼ 700:5 mm

and B¼Ab12¼ 21.94 mm, in close agreement with Vuil-

laume’s choice of dimensions for his geometric model.

This simple geometric construction enabled Vuillaume’s

bow makers to graduate bows with the same taper as Tourte

bows. However, it is most unlikely that Tourte would have

used such a method. Like all great bow makers, Tourte

almost certainly had an innate feeling for the appropriate

taper and camber of the bow based on the flexibility of the

stick and an aesthetic sense that so often mirrors the ele-

gance and beauty of simple mathematical constructs.

Vuillaume’s related mathematical expression for the

taper can be derived as follows. From the scaling of triangles

with equal internal angles, the distance xn of the n-th upright

from the point of intersection of the sloping line with the

base-line satisfies the recurrence formula,

FIG. 5. (Color online) Vuillaume’s geometric model reproducing his measurements of the taper of Tourte bows, with a photograph of a bow on the same

physical scale and a plot illustrating the functional form of the tapered stick diameter along its length.
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xn ¼ bxn�1: (14)

By iteration,

xn ¼ xob
n; (15)

where xo is the distance of the far-end of the stick from the

point of intersection of the sloping line. Each value of n> 0

corresponds to the position along the stick at which the di-

ameter of the following section decreases by t¼ 0.3 mm.

The diameter dn at xn is therefore given by

dn ¼ do � n� 1ð Þt; (16)

where d0 is the diameter of the initial section.

To obtain the algebraic relationship between dn and xn,

the logarithm is taken of both sides of Eq. (15). The value of

n can then be replaced in Eq. (16) to give

dn ¼ do þ tð Þ � t log xn � log x0ð Þ= log b½ �: (17)

This progression can be described by the continuous

function

d xð Þ ¼ C� D log x; (18)

where x is still measured from the point of intersection of

Vuillaume’s sloping line, 175 mm beyond the end of the

stick, D¼ t/log b and C�D log x1 is the diameter at the end

of the initial 110 mm constant cross-section length

(x1¼ 175þ 700 �110¼ 765 mm). Insertion of the above pa-

rameters in Eq. (18) and redefining x as the distance meas-

ured from the head-end of the tapered stick gives

d xð Þ ¼ �6:22þ 5:14 log xþ 175ð Þ; (19)

with values of the constants essentially identical to those of

the Vuillaume expression Eq. (13) cited by Fétis. Note that

this formula only applies to the upper 590 mm tapered sec-

tion of the bow—the lower 110 mm has a constant diameter

of 8.6 mm and includes a holding section that is lapped with

leather with a metal over-binding to protect the stick from

wear.

The mathematical expression replaces the discrete point

values of the geometric model with a continuous expression.

It is clearly independent of the number of sections over

which the changes in diameter were originally measured.

It says much for French education at the time that Vuil-

laume had the necessary mathematical skills to devise both

the geometrical model and the equivalent mathematical

expression. It is, of course, likely that he collaborated in their

derivation with Felix Savart or some other scientifically

trained researcher.

Somewhat later, Woolhouse3 developed a similar for-

mula based on his independent measurements of the taper of

Tourte violin, viola and cello bows. Woolhouse’s measure-

ments are tabulated in Saint-George’s monograph2 along

with an incorrect expression for the diameter expressed in

inches. However, in his original publication, Woolhouse ini-

tially cites the diameter in mm as

d xð Þ ¼ �6:17þ 5:08 log xþ 184ð Þ; (20)

before incorrectly transcribing it into inches. The above expres-

sion differs from Vuillaume’s expression, Eq. (13), by less than

1% over almost the whole length of the bow, which is almost

certainly within the accuracy of their measurements.

It is not obvious why Tourte used the particular taper

described above, other than to reduce the weight at the end

of the bow without over-reduction of its strength. Other

smoothly varying tapers can be devised between fixed upper

and lower diameters dU and dL of the general form

d xð Þ ¼ dU þ dL � dUð Þ log x=K þ 1½ �
log L=K þ 1½ � ; (21)

where L is the length of the tapered section of the bow and K
is a scaling distance equivalent to the distance of the point of

intersection of the sloping line beyond the end of the bow in

Vuillaume’s geometric model. K effectively defines the

length scale from the end of the bow over which most of the

taper occurs. For Tourte bows, the Vuillaume taper parame-

ter K � ‘/4¼ 175 mm, where ‘ is the total bow length.

As K is increased, the taper is more uniformly distrib-

uted over the length of the stick, approaching that of a simple

truncated cone for large K-values, while smaller values shift

the major changes in tapering further towards the tip of the

bow. The Woolhouse expression corresponds to a very

slightly larger K-value than that derived by Vuillaume.

Figure 6 compares the tapers of fine violin, viola and

cello bows measured by Woolhouse3 and reproduced by

Saint-George.2 The dashed lines drawn through the meas-

ured data points are generalized Vuillaume plots, with con-

stants chosen by hand to pass through the measured values.

The constants clearly have to be varied to describe the larger

FIG. 6. (Color online) Measured tapers of violin, viola and cello bows by

Woolhouse, with dashed lines representing fitted plots of the generalized

Vuillaume-Fétis expression for the taper.
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diameters and slightly shorter lengths of viola and cello

bows, though the general form of the taper remains much the

same. Vuillaume derived a very slightly larger thicker sec-

tion for the bows he measured illustrated by the solid line.

The main difference between violin, viola and cello bows is

their increasing diameter, hence weight.

IV. FINITE ELEMENT COMPUTATIONS

A. Geometric model and buckling

The Vuillaume expression for the tapered Tourte bow

will now be used to describe the taper of our finite-element

bow model illustrated schematically in Fig. 7. A uniform elas-

tic constant of E¼ 22 GPa along the grain is assumed. The

bow stick was divided into 14, equal-length, conical, sub-

domains describing the tapered length of the stick with a

crudely modeled rigid bow head and frog at its ends. The bow

hair was simply represented by the hair tension between its

points of attachment on the underside of the frog and head of

the bow.

Because the structure is relatively simple, at least in

comparison with the violin, a 3-dimensional analysis of the

bending modes was used. Each subdomain was divided into

a medium-density mesh resulting in typically �10 K degrees

of freedom. Deflections were confined to the plane of sym-

metry passing through the stick, frog and head of the bows.

The out-of-plane deflections will be discussed in a later pa-

per on vibrational modes.

The initially straight stick was bent by the same combina-

tions of forces and couples used to set the bending profile of

the uniform diameter bow stick. Using COMSOL linear finite

element analysis (FEA) software on a modest personal

computer, bending profiles for small deflections could be

computed in a few seconds, while non-linear analysis, which

takes into account all changes in geometry on bending, typi-

cally took a few tens of seconds. This increased to several

minutes to compute the profile of a stick under the influence

of very large bending couples and forces, when the two ends

of the bow are forced to move close together.

As an example, Fig. 8 illustrates the bending profiles of

an initially straight bow as a function of hair tension applied,

first across the ends of the frog and head of the bow in the nor-

mal way and then slightly offset from the central stick axis by

the radius of the stick. In both cases, the point at which the

tension is applied at the frog-end is pinned allowing the bow

to rotate, while the tip end of the hair is constrained to move

in the direction of the applied tension. The plots illustrate the

relative motion of the two ends of the tensioned hair towards

each other, while the figures show the associated bending

profiles.

For the slightly offset tension, there is very little bend-

ing or inward motion of the two ends until the Euler critical

load of TEuler¼EhIip2/L2� 75 N is reached. At this tension,

there is a fairly sharp transition to the buckled state, with the

two ends of the stick forced to move towards each other. hIi
is the appropriately averaged second moment of the cross-

sectional area of the tapered stick. The computations show

that the critical load of a straight stick with the Tourte taper

is the same as that of a constant radius stick of diameter 6.4

mm—somewhat larger than the 5.3 mm diameter at the tip

end of the tapered bow but smaller than the 8.6 mm radius at

the frog-end.

In contrast, when the tension is applied across the frog

and tip, the couples across the ends of the bow result in a sig-

nificant amount of bending (buckling) well below TEuler.

There is then a continuous transition to the highly buckled

state with no sudden instability at TEuler. This is exactly what

one would expect, as it corresponds to the drawing up of a

simple hunting bow as the string tension across its ends is

increased. Because of the additional couple from the lever

action of the hair tension acting on the frog and head of the

bow, the amount of bending is always larger than the buck-

ling produced by compressive forces across the ends of an

initially straight stick. The amount of bending at low hair

tension is clearly proportional to the couple from the offset

FIG. 7. Finite element geometry of a Tourte-tapered violin bow stick with

attached head and frog having effective lever heights from the neutral axis

of 18 mm at the head of the bow and 24 mm at the frog.

FIG. 8. (Color online) Large-deformation, non-linear, finite-element com-

putations of the deflection of the mid-point of a Tourte-tapered bow stick as

a function of hair tension, first applied in the normal way across the ends of

the frog and head of the bow and then only slightly offset from the central

neutral axis of the stick by the stick radius. The associated bending profiles

of the tapered stick are illustrated to exact scale.

4112 J. Acoust. Soc. Am., Vol. 130, No. 6, December 2011 Colin Gough: Violin bow flexibility

Downloaded 14 Jan 2012 to 90.149.95.127. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



compressive load, which is determined by the frog and head

lever heights.

The non-linear finite element analysis extends the com-

putations to the whole range of possible bending forces and

hair tensions, whereas the analytic, small tension analysis is

limited to compressive forces across the ends of the bow sig-

nificantly smaller than TEuler, beyond which the solutions

become unphysical.

B. Bending profiles of the tapered stick

The bending of an initially straight Tourte-tapered bow

by the same combinations of couples and forces will now be

considered using the same couple, mirror and stretch bend-

ing profiles of the constant diameter bow stick described in

the earlier analytic section. The weight bending profile gen-

erated by adding a weight to the mid-point of the horizontal

stick is also included, as this is often used by bow makers to

assess the strength (rigidity) of the stick.

Figure 9 illustrates the development of the bending pro-

files as the couples and forces are increased in equal steps

over the ranges indicated. The solid lines show the deflections

computed using large-deformation, non-linear, finite-element

software, while the dashed lines show the computed profiles

from linear, finite-element analysis. As a result of the taper,

the maximum downward deflection of the stick is shifted to a

position about 5 cm beyond the mid-pint of the stick.

The difference between the two sets of computed bend-

ing profiles occurs because the linear analysis neglects the

changing influence of the longitudinal forces on the stick as

the bending changes [Eq. (2)]. This results in non-linear

deflections of the bow despite the strains within the stick

itself remaining well within the linear elastic limit. The lin-

ear analysis only involves the contribution to the bending of

the initially straight stick from the couple acting on the stick

and not from the longitudinal force, which only contributes

to bending once bending has occurred.

The compressive forces across the ends of the bow gen-

erating the mirror profile enhance any bending already pres-

ent. This results in a non-linear softening of the bow as the

bending is increased. In contrast, the extensive forces gener-

ating the stretch profile tend to inhibit further increases in

bending resulting in a non-linear increase in rigidity of the

stick. Such non-linearities are referred to as geometric non-

linearities and occur even though the strains within the stick

itself remain well within the linear elastic limits.

For the couple and weight profiles, the deflections are

simply proportional to the bending forces, as there are no

longitudinal forces giving rise to non-linearity.

The open symbols in Fig. 4 plot the computed maximum

downward deflections of the tapered Tourte for the bending

forces and couples generating the mirror, couple and stretch
profiles. As remarked earlier, the computed deflections are in

excellent agreement with the mid-point deflections predicted

by the simple analytic model. The analytic deflections are rep-

resented by the solid lines, with forces scaled to give the same

critical buckling load. Such agreement is unsurprising, as the

deflections—of order the frog and bow head heights—are

small compared to the length of the bow stick. The geometric

approximations made in the analytic model are therefore well

justified. However, finite element computations are necessary

to investigate the asymmetries produced by the taper and the

different geometries of the frog and head of the bow.

C. Influence of hair tension

Figure 10 illustrates the influence of hair tension on the

four bending profiles generated by external couples and forces

FIG. 9. The dependence of the

bending profiles of an initially

straight Tourte-tapered bow as a

function of the forces and couples

used to generate them plotted for

equal steps of the forces and couples

involved. The dashed lines are the

computed profiles computed using

linear finite element analysis and the

solid lines show the profiles pre-

dicted by large-deformation, non-

linear computations.
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chosen to give a downward stick deflection of �16 mm at

around 30 cm from the end of the tapered stick. The plots also

highlight the differences in initial bending profiles before the

hair tension is applied. For example, the stretch profile is very

much flatter in the middle of the bow with much more curva-

ture towards its ends than the mirror profile, confirming

the results for the symmetric, constant radius bow model in

Fig. 3.

As expected, a bow with the mirror profile is the weakest

and pulls “straight” with a hair tension of only� 30 N. Bows

with the couple and weight profiles are considerably stronger

requiring a hair tension of around 50 N to straighten, while the

bow with the stretch profile is very much stronger requiring a

hair tension of 150 N to straighten. Only tapered bows with

mirror and stretch untensioned cambers straighten uniformly

along their length.

The computations confirm that a Tourte taper with a

couple bending profile would be unable to support a typical

hair tension of 60 N unless its along-grain elastic constant

was well in excess of the assumed value of 22 GPa. Further-

more, Fig. 10 shows that such a bow would not straighten

uniformly on tightening. The computations also confirm that

increasing the curvature towards the upper end of the bow

increases the strength or rigidity of the bow.

V. DISCUSSION

The bending profiles and resultant flexibilities involve

forces and couples that scale with the critical Euler tension

EIp2/‘2. Our model can therefore easily be scaled to viola,

cello and double-bass bows, as illustrated by the fitting of the

Vuillaume’s expression for the taper to Woolhouse’s meas-

urements in Fig. 6. Although the scaling clearly depends on

the length ‘ of the stick, by far the most important factor is

the r4 dependence of the second moment of the area I. The

larger diameter and slightly shorter viola and cello bows have

a significantly larger Euler critical load allowing them to sup-

port significantly larger hair tensions without straightening

prematurely or buckling sideways.

Until very recently, there were few published measure-

ments of taper and camber curvatures on the same bow to

compare with our bending models. However, Graebner and

Pickering13 have recently published such measurements for

a number of bows of varying quality including a favorite

bow of Heifetz by Kittel (the “German Tourte”) of around

1850. Their measurements of bow diameter and curvature

are plotted in Figs. 11(a) and 11(b), which also plots the

corresponding values for the Vuillaume-Tourte model

assuming a couple untensioned bending profile (camber).

The predicted curvatures proportional to 1/(diam)4 have

been scaled to take into account differences in densities and

elastic constants.

Graebner and Pickering have suggested that the pure
couple profile represents the optimum camber for a well-

made bow. This agrees well with their measurements for the

Kittel bow, but less well for many other bows (private com-

munication). In contrast, our computations suggest that a

Tourte-tapered bow with a bending profiles generated by

couples alone across its ends would be marginally too weak

to support today’s playing tension of �60 N without pulling

straight prematurely—unless the longitudinal elastic con-

stant was well in excess of 22 GPa. This may well be the

case for the Kittel bow.

Our analysis shows that, although a uniform diameter

bow stick with a couple profile would pull straight on

increasing the bow hair tension, this is no longer true for a

tapered bow. However, it is by no means clear that this

would significantly affect the performance of the bow.

FIG. 10. Straightening of the bow

stick on increasing the bow hair ten-

sion in equal steps over the indicated

range. In each case the forces and

couples setting the initial camber of

the bow were adjusted to give a typi-

cal maximum downward deflection

of �16 mm. For the couple profile

C¼ 9.5 Nm, for the mirror profile

F¼ 50 N, for the stretch profile

F¼ 190 N and for the weight profile

W¼ 9 N.23.
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A detailed comparison between the Graebner and Pick-

ering measurements and the Tourte-tapered bow suggest

other possible reasons why a pure couple bending profile

may well result in a sufficiently strong bow. Figure 11 shows

that, although the Kittel bow is slightly thinner than a Tourte

tapered bow at its upper end, the diameter increases more

rapidly than the Tourte bow and exceed it over a distance of

�20 cm in the upper half of the bow, before decreasing

below the Tourte diameter at the frog end. This would

account for the difference in curvature from that of the

Tourte bow stick shown in Fig. 11(b) potentially giving the

bow the added rigidity required to support the hair tension.

Leaving the thinning of the bow to further along the

stick corresponds to a decrease in the extrapolation length K
in our generalized Vuillaume-Fétis expression for the taper

[Eq. (13)]. However, finite element computations suggest

that the associated increase in rigidity would be relatively

small, only increasing by around 35% for K decreasing from

175 mm to 10 mm, which corresponds to an extremely large

difference in taper profile.

VI. SUMMARY

Analytic models and large deformation, finite element

computations have been used to investigate the dependence

of the flexibility of a Tourte-tapered violin bow on its taper,

camber and hair tension.

Representative cambers have been considered generated

by various combinations of forces and couples across the ends

of the bent stick, both in the untensioned state and with addi-

tional couples and forces from the tensioned bow hair. The

computations demonstrate that bows of any desired flexibility

can always be achieved by a suitable choice of camber, what-

ever the elastic constant of the stick. The often overlooked role

of longitudinal forces on the bending profile is highlighted.

In all cases the forces and couples required to produce a

given bending profile and rigidity of the bow stick scale with

the Euler critical buckling load. The predictions can, there-

fore, be generalized to describe viola and cello bows. Finite

element computations demonstrate that the critical buckling

force for a tapered violin bow stick is typically around 75 N,

which is not much larger than typical bow hair tensions of

around 60 N. This explains why sideways buckling is always

a problem for sticks that deviate from straightness or have

rather low elastic constants.

The taper assumed for our finite element computations

was based on a geometrical model and related mathematical

expression originally introduced by Vuillaume to describe

his measurements on a number of Tourte bows. This model

is re-derived and generalized to describe the tapers of viola

and cello bows and shown to be equivalent to a similar

expression cited by Woolhouse (after correction for an arith-

metic error in the original publication).

Our predictions are compared with recent measurements

on a fine bow by Kittel by Graebner and Pickering,13 who

assume the ideal camber for a stick is produced by matched

couples alone across the ends of the initially straight stick.

The analytic and computational models developed in

this paper provide the theoretical framework for our subse-

quent analysis of the dynamic modes of the bow stick and

their coupled modes of vibration with the stretched bow hair.
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