Some changes of the spectrum caused by
pitch flattening of the bowed string
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Abstract

The phenomenon of pitch flattening of a string bowed with excess bow force ("bow pressure”) is well
documented' 2 ® and is related to the hysteresis function of the resin's friction curve. One consequence of such a
frequency shift is the very noticeable change in the spectral envelope, which cannot alone be traced back to the
changes in the spectrum of the "input signal", i.e.: the velocity of the string at bowing point. This paper discusses
the highly resonant nature of the transfer function between velocities of the bridge and the string at the point of
excitation, and illustrates the effects through computer simulations.

Slipping period versus pitch flattening
Simulations performed by the author show that
during a stroke with increasing bow force, the
slipping period typically approaches an
asymptotic minimum value of t, =T x/L during
the expiration of the "rounded comer - and
holds this value also when pitch flattening
extends the total period between each slip. (T, =
natural period of the string; x = distance between
bridge and the point of excitation; L = total string
length. See fig. 1:)
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Figure 1: Upper half - slipping period in
percentage of the natural oscillating period
(Ty) of the system. Lower half - pitch
flattening in cent. Abscissa indicates a
relative friction delta:
AF=F)-FV,,L/x). (All curves are
smoothed.)
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This implies that the spectrum envelope of the
“input signal”, v, (velocity of the string at bowing
point), remains nearly constant as long as the
slipping period remains constant, while harmonic
frequencies are being shifted downward inside of
the same envelope as a result of a (moderately)
lowered fundamental.

Provided the rude simplification that vx
describes perfect square waves after slipping
periods of T x/L are obtained, their spectrum
envelope takes the function Y = |sin S | /S, where
Y signifies the normalized amplitude, and S = &t
Iy, - Hence, the frequencies nt, , (n=1,2,3...)
cannot exist as part of the input signal,
consequently neither as part of the output signal
at the bridge.

However, due to the special characteristics of
the transfer function between the string at bowing
point and the bridge, the sinusoidal features of
such an input spectrum appear not to be very
recognizable when studying the spectrum of the
output signal at the bridge (see figures 2 a and b):

The simulation model used for these figures
included a bridge with "Cremer reflection™
(spring + dashpot, with a high delta function), nut
reflection involving convolution with a wide
gaussian function! °, and string torsion with low-
pass reflection functions at both ends.
Furthermore, the velocity of a non slipping bow
was programmed to describe perfect square
waves with positive periods of 2(L-x)/C and
negative fly back (quasi slipping) periods lasting
2x/C, where C = transverse wave velocity, and
x=L/7.



INPUT VELOCITY SPECTRUM: .

l“ LT

HARMONIC FREQUENCY —

= =

FTw-Amy o

-4

=

]

=

b

=

Figure 2a.

Transfer function string/bridge

OUTPUT VELOCITY SPECTRUM:
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Figure 2b.

The transfer function of an ideal string driving a bridge from a point of excitation located at a distance
x from the bridge, can be developed in the following way (imagining zero reflection at the nut):

zZ = characteristic wave resistance of the string.
Zgr(jw) = impedance of the unstrung bridge (w=2=nf).
ver(J®) = velocity of bridge.
vyx(jw) = transverse velocity of the string at x.
b'e = distance from bridge to point of excitation.
F(x,jw) = the exciting force.
c = transverse wave velocity.
Ter(jw) = velocity transmission at bridge.
Rpr(jw) = velocity reflection at bridge.
g F(x,jw) [1+ Ry (jw) e 792X/
vy(jo) = Z1XJ0) B Rmije) e 7777 (1)
22
. 2Z ,
T W) = =R +1 2
sr(J@) 272, (70) sr(JW) (2)
, F(x,j0) Tgp(jw) e-F0x/C
v W) =
s (J @) 57
F(x,jo) [Ryp(jw) +1] e JoX/c (3)
2Z
Vr (J0) [Rezr (Fw) +1] e~FeX/c (4)
vy(jw) 1+Rg, (jw) e-Jwzx/c



In polar form: Rp(jw) = (r,@); -w2x/c =a.

Since cos(@+a) = -1 at the (impedance) resonances:
Ver (JWo) | _ J(T+r cos@)?+(r sing)? (5)
v, (Jw,) 1-r '
In general:
Ver (JO) | _ \l (1+r cos @)% + (r sing)? (6)
vy(Jw) [1+r cos(@+a)]2+[r sin(@+a)]?2
If cos ¢ * -1 atw, = L‘W > 1; and
vy (Jw,)
if 9@,y at o, ——VBR{‘?(O’) -———-—-—-—~VBR('?0°}
dw vy(Jw,) Vx(Jw,)
d Ver (JW)
. ve(jw) | _
at a maximum response frequency (w,=w,), where o =0.

The most interesting feature of this equation (see eq. 6) is the key role that the phase of the
reflection at the bridge is playing: very high values of | v, (jw)/v,(jo) | canbe reached if cos g is unequal
to -1, and/or its derivative with respect to frequency is different from zero.

It should be noticed that the transfer function above is independent of any reflection from the nut or
the bow, thus independent of their respective admittances. However, the impedance of the string at
point x is indeed a function of both bridge and nut reflections:

Z(x, jw) =22 1 + 1 -1 (7)

1+RBR(jm) e-jwzx/c 1+Rwr(j¢°) e -Jjw2(L-X)/C

where Ryr(jw) = velocity reflection at the nut.

366



TRANSFER vg(jo)/vy(jo):
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Figure 3: Transfer function with a purely
resistive bridge.

REFLECTION AT BRIDGE, R(j):
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Figure 5: Reflection function of the bridge
model utilized for the simulation of figure 4.

Figures 3 and 4 show the simulated transfer
functions of two different bridge models. Figure 3:
a purely resistive bridge, where the resistance of
the unstrung bridge is 20 times greater than the
characteristic wave resistance of the string. Figure
4: a resonant spring + mass + resistance model, to
which the belonging reflection function is shown
in figure 5.
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Figure 4: Transfer function with a resonant
bridge.

These simulations were prepared by
programming random (quasi white noise) bow
velocities over 8192 time steps, after which a
straightforward calculation of the FFT of Ve
with Hanning dévided by FFT of v, with Hanning
was performed.

In the case of a purely resistive bridge, the
transfer function takes maxima equal to unity and
minima equal to Z/Z_. With the resonant bridge
model of fig. 4 and 5, maxima up to +20 dB are
noticed.

Transference with pitch flattening

In figures 2 a and b, the "node harmonics" (7.,
14., 21., etc) were missing due to the integer ratio
(7) between the quasi slipping- and the whole
period. In figures 6 a and b, the same string model
is used once more: this time it is bowed with
constant velocity and a high "bow pressure”,
forcing a 14 cent pitch flattening on to the system.
Now, the "node harmonics" appear at the output
with considerable power in spite of the modest
values these are holding in the input velocity
spectrum (see figures 6 a and b):



INPUT VELOCITY SPECTRUM:
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Figure 6: Spectra -at bowing point (a) and
the bridge (b) when a pitch flattening of 14
cent is simulated. Bow position is x = LI7.

Sound example

In order to exemplify the effects described above,
the simulated velocity of a bridge was recorded
during a series of five different bowing patterns:
at all times the velocity of a non slipping bow was
describing square waves with a "fly-back" period
equal to T x/L. Pitch flattening was obtained by
prolonging the positive (quasi static) period
successively by T/252, thus flattening the pitch
about 7 cent each time.

The initial whole period was T, = 2L/C. The
simulations were performed with a compliant bow
and a Cremer model bridge. Upon transference to
audio, the high frequencies were boosted
somewhat in order to emphasize differences in the
overtone patterns. The series is played three times.

368

Acknowledgement
This presentation has been supported by the
Research Council of Norway.,

References
1.McIntyre, M.E. and J.Woodhouse: "On the
Fundamentals of Bowed String Dynamics”,
Acoustica Vol 43 (1979).
2McIntyre, M.E., R.T.Schumacher and J.
Woodhouse: "On the Oscillations of Musical
Instruments”, J.Acoust.Soc.Am., 74, (Nov.
1983).
3.Schumacher, R.T.. "Measurements of the
Parameters of Bowing", Proceedings of the 12th
International Congress on  Acoustics,
Toronto 1986.
4.Cremer, L.: "The influence of "Bow Pressure" on
the Movement of a Bowed String”, CAS NL
Volumes 18/19 (1972/73).
5.Woodhouse, J.: "On the Playability of Violins. Part
One: Reflection Functions", Acoustica 78
(1993).



