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1. INTRODUCTION

In this work computer simulation is used to study
parameters influencing the starting transient of the
bowed string. While many informative analyses of the
bowed string during a steady state of oscillation have
been published during the last few years, the conditions
for the attack, which are indeed of great interest to the
performer, have not been treated in detail. Of the many
questions that arise, the following will be discussed:

—What are the requirements for reaching Helm-

holtz motion [1] as quickly as possible?

—How does string torsion interact with transverse

motion? '

—What is the effect of frictional losses in the string

and the bridge with respect to playability?

—In which way can the characteristics of a bow in-

fluence its playing quality?
A systematic study of all parameters influencing the at-
tack is not possible within a short paper. But simulated
examples will demonstrate the basic influence of some
important parameters on the initial transient of a bowed
string.

2. THE COMPUTER PROGRAM “FIDDLE”

FIDDLE is a computer program based on the
D’Alembert solution to the wave equation in the time do-
main. The two waves travelling in opposing directions
along the string are expressed:

2.1) n(x,t) =n,(x—Ct) + n_(x+Ct)

where n(x,t) is the transverse displacement of the
string as function of the position (x) on the string,
and the time (t). C is the wave velocity.

Input signal (“the stroke™) is the bow pressure (z-force)
and bow the velocity as functions of time, exciting the
string at one programmable (zero width) position. The
string is considered free of any loss in the transverse
plane except at bridge and nut, where resistances and
springs are individually programmed through first order
differential equations. Torsional waves are treated simi-
larly: they are reflected, but usually given large losses at
high frequencies. Transverse and torsional wave impe-
dances of the string are individually programmable as is
the ratio of wave velocities. The frictional characteristic
of the resin is given by a function of relative velocity in
order to match curves obtained by Lazarus [2] and oth-
ers. FIDDLE can also model bow compliance. Observa-
tions of its effect on gripping ability are discussed in this
paper. The outputs demonstrated in this paper are the
frictional force and the displacement of the string at the
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bowing point. The frictional force is calculated as

_ 2Z o Z v
2.2} A1) M-RvaZq-(JR AV(t)
where Z . = transverse wave impedance (character-
istic resistance) of the string;
Zog = torsional wave impedance; AV(t) is the differ-
ence between the calculated string surface velocity at
the bowing point and the velocity of the same surface
assuming that friction instantly dropped out at the
beginning of the time-step in question.

3. SIMPLIFIED ANALYSIS OF AN ATTACK

In order quickly to create a Helmholtz movement in
the string, it is crucial to obtain only one slip and one grip
during each period of the fundamental frequency as early
as possible. This may be obtained already during the first
period, but depends on a delicate balance between bow
pressure and velocity.

The frictional force curve of a “perfect” attack may
look as illustrated in Figure 1:
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Figure 1: Frictional force during a successful attack
(simulated).

Peaks in force appearing during the periods of static
friction will cause premature slips if they exceed the max-
imum friction. While static frictional force is a function
of the bow velocity during the transient (see Eq. 3.1), the
maximum friction is determined by bow “pressure”.

For the torsionless, perfectly flexible string with no
losses and total reflection at each end, the static frictional
force can be expressed by the following equation:

3.1) f(t) =2Z,,, [ V(1) + _O§1V\. (t=it,)
1=

m .
+ ‘E VY ('-_le)
=1

where Z, = transverse wave impedance (real quan-
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tity); V4(t) = bow velocity as function of time; V, =
velocity of the string at the point of excitation (X); L
= length of the string; 0<X<L; t, AX/C i t, =

A(L=X)/Cigy; Crgy = transverse wave velocity. V,
and V,, are both zero for t<<0.

When the friction is sliding, the velocity of the string
at X is:

fj b P : ® .
3.2) Vyt)=—— T Vi (t-it,) = = Vi{t=jt,)
=1

ry 15

where f, = sliding friction.

The simulation of such a string bowed with constant
velocity and pressure is demonstrated in Figure 2. The
slips are synchronous with the fundamental frequency
until a double period occurs after the 6th period. (X =
L/8.) In general: after (L—X)/X periods, the subsequent
release will be cancelled due to interference between the
frequencies f,,, 1/t, and 1/t,. An increase in bow velocity
is indeed required if the synchronization of release is to
be maintained - as pointed out by L.Cremer [3,4].
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Figure 2: Flexible string without losses. (a): frictional
force during an attack with constant bow velocity and
pressure. Broken X-axis indicates sliding friction. (b):
displacement of string at bowing point.

With this system the requirements for obtaining a
first period composed of “one slip/one grip” when bow-
ing with constant, positive bow velocity and pressure are:

3.3 fit, +t)<f, and
ﬁtrcl+ + T) = fmax

when using equation (3.1) as for static friction. T =
period of the fundamental frequency; t , = time of
the first release.

This leaves only a small range of acceptable starting
velocities: Vymin through V max.

Detail from comparison of two simulations (with
losses) is demonstrated in Figure 3: X=L/8. V max is
only 17% greater than V ymin. Typically, V ;max/V min is
near to L/(L—X). The tolerance of V is caused by the
drop in frictional force starting at the time t, after the
first flyback of the string.

4. TORSIONAL WAVES INCLUDED

Figure 4 (a) and (b) compare the attack transients of
two strings with different wave impedance ratios: (a)
Zigv=220g/sand Z,, = 660 g/s; (b) Z,, = 280 g/sand
Z .o = 380 g/s. These impedances are within the range
found in the violin D-strings tested by Schumacher [5]
and Pickering [6]. Because the mechanical series imped-
ances of the two strings (165 g/s and 161 g/s respectively)
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Figure 3: Frictional force between bow and string. Two
different bow velocities are simulated, both allowing for
one slip and one grip during the initial period. Fine line:
close to Vymax. Bold line: close to V;min. Maximum
frictional force is indicated by the horizontal, dotted
line.
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Figure 4: Strings of different impedance characteristics.
Transverse (bold line) and torsional (fine line) displace-
ments of the string at bowing point with respect to equi-
librium during a simulated attack. V, increasing from 24
to 42 cm/s.

fall very close together, both can be treated with the same
stroke during the attack. The strings are tuned to 440 Hz;
bow pressure is 1 N.; L/X=6; V, starts at 24 cm/s increas-
ing 220 dB per second (5.9% per period); C, o /Crpy =
6.0 and 3.0 respectively. Reasonable losses are intro-
duced at bridge, nut and for the reflection of torsional
waves. Torsional displacement is to be understood as ra-
dians times radius.
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For both strings the torsion is greatest during the
first few periods, then decaying rapidly to smaller ampli-
tudes as the static frictional force diminishes due to the
expiring transient. The transverse amplitudes however,
are all the time increasing, as would be expected with the
increasing bow velocity programmed.

When comparing the two graphs of Figure 4, the
transverse amplitudes build up more gently in (b), where
the torsional impedance is small and therefore the initial
torsional amplitudes relatively higher. However, due to
the higher transverse wave impedance of string (b), its
transference of waves to the bridge is, compared to string
(a), the greater most of the time. Spectrum analyses of
their two transients reveal significant differences, but
this complex matter has yet to be interpreted math-
ematically.

5. THE EFFECT OF LOSSES

In Figure 1 the force peaks fade out quickly in spite
of an accelerating bow. The reason is to be found both in
the cyclic pattern shown in Figure 2 and in the fact that
any loss contributes to the expiration of the transient.
The losses play an important role also during the first
period, being one of the factors determining the range of
acceptable bow velocities.

Figure 5 demonstrates an algorithm which facilitates
approximate calculation of the frictional force as a func-
tion of bow velocity, utilizing the Laplace transform or
redrawing the scheme to an electrical circuit suitable for
analysis with SPICE or equivalent programs.

By calculating the force as a function of an estimated
V, in the time window t=0 to t=t_,+T one can get a fair
impression of the system’s response to the first release of
the string and thus its “playability”.

" Notice that the admittances of the element pairs in-
dexed 4 and 8 are expressions for torsional losses due to
internal sliding friction of the string components during
wave propagation, thus functions of the string lengths in
question.

With the Laplace transform, the total impedance of
the system indicated in Figure 5 can be expressed as:

1

5.1) ZUs)= —S s s s
) 0= Rk T Ak T RAK, T ERAK,
I
+ S S S ]

SR+K, T SRAK, | sSRAK, | sR+K,
The force between the bow and the string is then found as
5.2)  A(s) = Vy(s)Z(s)

Transformed to the time domain, the force will, with a
constant (string surface) velocity starting at t=0, give the
following equation:

5.3) f()=M + Nt + Oe ™ + Pe ™ + Qe @
+ Ue ™t + Ve ' +We ™
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Figure 5: Circuit allowing for Laplace calculation of fric-
tional force during the first period of an attack:
R, =resistive element of the bridge; R,=R =transverse
wave impedance (characteristic resistance) of the string;
R,=R,=torsional wave impedance of the string;
R,=R,=(f,+f))/(f,—f,), where f = roll off frequency for
torsional waves returning to the bowing point after re-
flection at the bridge, and f,=frequency where the —6dB/
oct drop ends; R =resistive element of the nut; R, corre-
sponds with R, on the nut side of the bow.

K, =spring element of the bridge; K,=2R /t;; K,=2R/t,,
where t;=2X/C; g, and C;,,=torsional wave velocity;
K,=2nf (R,+R,); K,=spring element of the nut;
K=2R/t,; K,=2R,/t,, where 1,=2(L—X)/Cqg;
K 2nf,(R,+Ry), where f; corresponds with f, on the nut
side.

Figure 6 (a) and (b) compare Laplace calculations (fine,
smooth lines) with the frictional force curves of two at-
tacks simulated with bowing point near the bridge (X=L/
16). The maximum frictional force is indicated by hori-
zontal, dotted lines, while the vertical dotted lines
indicate changes between sliding and static friction. Bow
velocity, pressure and all other parameters are equal in
(a) and (b), with exception of R, which in (a) has been
chosen to simulate a great frictional loss at the bridge; in
(b) this loss is significantly smaller.

V,, has been chosen to facilitate a perfect attack with
the system of (a), but, as can be seen from (b), the same
bow velocity is too small for a system with a better re-
flecting bridge, resulting in a prolonged first period. No-
tice how the frictional force builds up differently after the
slipping period in the two cases.

In general: substantial loss of energy across R,
and/or R, - or any similar element introduced on the
bridge side - demands a reduction of bow velocity during
the attack, no matter where the energy loss is situated.
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Figure 6: Frictional force: simulation (bold line) com-
pared to Laplace-calculation (fine line) of the first part of
an attack. (a): high resistive (frictional) loss at the bridge.
(b): low resistive loss. Bowing parameters are kept equal
in (a) and (b). X-axis is solid when the friction is static.

On the other hand: if no loss exists of the higher frequen-
cies in the reflection of torsional waves, premature slips
are almost certain to take place due to high rising spikes
in the static frictional force.

6. THE EFFECT OF BOW COMPLIANCE

In all the examples referred to above, the bow has
been “stiff”, meaning V, = V,, whenever the friction is
static. A violin bow has some compliance in its longitudi-
nal direction, so it would be more realistic to consider V
as merely defining “an inertial frame” for the velocity of
the bow hair touching the string (V,,) (Schumacher [7]). If
the simulated bow is given a flexible coupling, i.e. a
frequency-dependent transmission between V, and V,,
it can be shown that transients [8] fade out much more
rapidly: the bow introduces damping of all waves in the
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Figure 7: Frictional force during an attack with the bow
accelerating 8.2% per period. (a): no compliance in the
bow; (b): 3.3 dB loss in the bow/string transmission
above f,; (c): 3.3 dB loss above 0.5f;,.
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Figure 7 compares frictional force of three simula-
tions, all with different bow compliances. The string is
programmed as for Figure 4(a), having a surface impe-
dance of 330 g/s. The same stroke is performed all three
times: V, smoothly accelerates as much as 8.2% per pe-
riod, from 50 to 300 cm/s. (a) shows the frictional force
with a “stiff” coupling, (b) and (c) show the force when
the following transfer function between “bow” and
“hair” is introduced: V (jo)/V,(o) = (1+jot,)/(1+joT,).
This function is valid for the hair holding a grip on the
unreflected string. During sliding friction the transfer
function is nonlinear.

For (b) the (mechanical parallel) impedance of the
bow is 0.707 Kg/s + 1,955 Kg/s,, which gives 1, =
1/2r300s', and 1, = 1/2n440s™' during static friction.
For (c) the impedance is 0.707 Kg/s + 977 Kg/s?, which
gives T, = 1/2n150s7', and 1, = 1/2n220s"'. As can be
seen, the shortest transient occurs when the (—3.3 dB)
loss in the transmission ranges from well below the fun-
damental frequency of the string (440 Hz).

It should be noted that the bow impedances utilized
for Figure 7 (a) and (b) will imply subharmonic frequen-
cies like those described by Mclntyre, Schumacher and
Woodhouse [9,10]. The appearance of subharmonic fre-
quencies probably represents a greater problem through
the inevitable periodical increase of the static friction -
endangering the static grip upon bow acceleration - than
does the “unwanted” frequency below the fundamental.

7. OUTLINES OF A “HIGH QUALITY” ATTACK

If, for convenience, a “high quality” bowed attack is
defined as one where the string makes one slip/one grip
per period, a qualitative figure of bow velocity restric-
tions can be made, provided the bow pressure is kept
constant (see Figure 8).

AV indicates the (normalized) range from V min/
Vymin to Vymax/V min at the conclusion of the first
period. The ratio Vymax/Vymin is typically near to
L/(L—X).

RESTRICTIONS OF BOW VELOCITY
Vv:u ﬁr DURING AN ATTACK WITH FIXED BOW PRESSURE
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Figure 8: During an attack the bow velocity should follow
a path inside the frame of A through D in order to create
Helmholtz motion as quickly as possible.

Catgut Acoust. Soc. J. Vol. 2, No. 2 (Series 1l) November 1992



K. Guettler: Bowed string computer simulated

Below AV prolonged periods will occur between each
slip. Provided an accelerating bow, the string will typi-
cally synchronize to the correct frequency as soon as the
range AV is entered. In practical playing, this lower range
must be regarded as desirable too, as long as the bow ve-
locity reaches AV within not too many periods.

2AV indicates a range where the fundamental fre-
quency will be greatly suppressed, while the 2. harmonic
will take over as the dominant fundamental.

Between the two ranges, AV and 2AV, several vari-
ants may occur, all including at least two slips per period.

Vymin and Vymax will be lowered if:

—the ratio X/L is lowered

—the combined wave impedance,

(Z1ortZ1gry), 1s increased

—the difference between max. static and sliding fric-

tional force is lowered

—Ilosses on the bridge side of the bowing point are

increased.

V, must typically be accelerated about 15 - 40% dur-
ing the (L—X)/X first periods in order to avoid any pro-
longed sticking (see line A in Figure 8), after which time
it may remain constant (see lower limit, line B), or, in
some cases even retard to a value slightly below the initial
Vpmin. (If one ignores torsion and spring elements of the
system, the minimum V; after the transient can be found
by rewriting Schelleng’s expression for maximum bow
pressure [11]:

v = AF X/(Z,,L), where AF, = maximum
static friction minus sliding friction.)

ZT()R z'T R \-"/

Bmin’

Curve C describes the greatest possible velocity gain
- where V is increasing exponentially from the initial
Vymax. With the X-lin/Y-log coordinates of Figure 8, C
can be drawn as a straight line until it smoothly bends to
horizontal and joins D. D describes the maximum after
transient bow velocity for the given bow pressure. This ve-
locity value will be lowered if X/L or AF, is lowered, or
the losses or Z ., increased. (Once more ignoring torsion
and spring elements of the system, the maximum V, after
transient can be found by rewriting Schelleng’s expres-
sion for minimum bow pressure: V, . = 2AF X?R,/
(Z1xyL)?, where R, = resistance of the bridge.)

The slope of C is dependent on several factors of
which bow compliance has the greatest significance. A
“stiff” bow demands a lowered acceleration, as can be ap-
preciated from Figure 7.

8. SOME CONCLUDING COMMENTS

It is obvious that the strict demands outlined above
cannot always be fulfilled by the player. Apart from the
difficulty in hitting the bull’s-eye every time, it is not al-
ways musically desirable to produce this kind of clear
and pronounced attack. However, learning to start a note
in such a way so that it develops to its full body as quickly
as possible, was always a part of a string player’s school-
ing. The closer the hit is to AV, the faster sonority appears
as well as the possibility to chose the most desirable tone
color. The skilled player will treat notes played in differ-
ent positions or on different strings with individual bow
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velocities, even at fast tempi, in order to make the instru-
ment speak as quickly and as fully as possible.

Because the transient period is a function of the fun-
damental frequency of the string, the violin has a natural
advantage over the cello and double bass, the transients
of which will last much longer. In fact: on the double
bass, a semi-quaver in march tempo (M.M. 120) will,
when played low on the E-string, never complete its tran-
sient time. When only 125 milliseconds are at hand, what
you get for each note is 3 to 6 periods at the most. In such
circumstances any incorrect V; will be most noticeable -
and sonority just a dream!

Only attacks with constant bow pressure have been
analyzed in this paper. Attacks with the bow pressure de-
creasing after the first slip give greater frictional toler-
ances both on the instrument and the computer, and are
frequently used by the player, but with the effect of ac-
centuating the note.

The influence of mass impedance at the bridge has
only been investigated to a limited degree by the author,
but a mass obviously affects the static frictional force
during the attack when playing near the bridge, thus also
affecting the tolerances of the bow velocity.
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