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ABSTRACT

The desire to expand the frequency range of a bowed instrument below the fundamental
frequency of the lowest sounding string, has lead to some interesting practical applications. Such
notes, being carefully bowed with low velocity in combination with high bow force, depend on
a periodic triggering of slip-stick caused by waves other than the normal "Helmholtz corner".
Their frequencies are not usually true "subharmonics”, since they are not simply related to the
natural first-mode frequency of the system. The triggering is often determined by a combination
of transverse and torsional waves and their respective reflections at the endpoints of the string.
Computer simulations of the bowed string reveal which frequencies are obtainable through this
bowing technique and how the triggering comes about. Both the bowing position and the
torsional wave velocity influence the possible length of periods.

INTRODUCTION

In the CASA Symposium on Musical Acoustics, Annapolis 1991[1], Roger Hansson and Oliver
Rodgers demonstrated the phenomenon of Anomalous Low Frequencies (ALF) performed on the
viola. Motion patterns of different points along the string gave insight in the nature of some
of these signals, while others were more difficult to interpret. The present author had come
across these peculiar oscillations at two earlier occasions: the first in a summer course for string
bassists in Cincinnati, Ohio 1979, where one student showed his ability to play notes far below
the normal range of his instrument. Secondly, through his own computer simulations of the
bowed string. In 1993 an appointment between Hanson, the present author and the editor of the
CAS Journal was made as to make two accompanying analyses of the phenomenon in two joint
articles. These were printed November 1994 [2][3]. Most of the content of the present article has
been derived from the CASJ article [3]. For more comprehensive information on simulation
parameters etc., the reader should refer to this one.



ON THE SIMULATION TECHNIQUE

In order to understand the slip-stick triggering mechanism involved, a computer program able
to simulate transverse and torsional movements of the string has been employed. The
programmable parameters are: wave impedances and velocities, reflection functions, bow
compliance, bow velocity and "pressure" as functions of time, and their interaction with a
hyperbolic friction characteristic of the resin. The program, as well as the present analysis, is
based on D’ Alembert’s solution [4] to the wave equation, where the positions of waves moving
in opposite directions are shifted with time. The solution in the continuous form reads:

(D N, 0 = ny(x-cr) + n(x+er)

where n,,, = (partial) string displacement; ¢ = the propagating speed of the wave; x = position
on the string; ¢ = time. Two sets of eq. (1) are used: one for transverse- and one for torsional
waves. In the simulation program, these interact only at the point of bowing, and only through
frictional force. Dispersion and losses are carried out by reflection functions "at the string
terminations". In general, the concepts of string simulation developed by Mclntyre, Woodhouse
and Schumacher [5][6][7][8][9] have been adoptet.

Some simulation parameters

To appreciate the influence of the ratio between transverse and torsional wave velocities, two
different strings are simulated: for string A, the ratio € = Cpgy, /Crog = 0.300, and for string B,
£ = 0.213. The Q-values for these strings range between 500 and 1000 for the transverse modes
(equal for both strings), while the Q-values for the torsional modes varies between 17 and 65
(7 and 24) for string A (B). The difference between A and B is only due to their propagation-
speed differences, as their end reflections as functions of time are kept equal for both strings.
The ratio of transverse and torsional wave impedances is set to Q = Zpg, /Zyor = 0.65 for both
strings to facilitate comparison. The admittance of the (single-pointed) bow is set to zero.

Potential frictional force

The frictional force (fg;) between the non-compliant bow and the string during the staric
intervals may be expressed through the following equation (which can be derived from ref. [8],
egs. (B13) and (B14):

(2) Ssi() = 2Zcyp [ Vow - 2Vwegy () ]
where
Zcyp = the combined wave impedance of the string, i.e., (Zgy Zog )/ (Zrgy + Zror );
Vgow = velocity of the bow; vy, (1) = signal of partial wave(i) arriving at the bow;
throughout this paper the term "signal" means derivative of (partial) displacement with
respect to time, i.e., 81 ,,(X) /6t vy, (1) and vy,(1) = transverse signals propagating away
from the nut and the bridge, respectively; vy,;(?) and vy,(1) = torsional signals
propagating away from the nut and the bridge, respectively.
Torsional signal is to be understood as string radius times radians per second, with the
convention that the angle twist is negative when the translational displacement is positive on a
fixed bow holding a static grip. The sum of the four partial signals (i. e., velocities) gives the
surface velocity the string would have taken at the point of bowing, if the bow had no friction.
It is convenient to refer to fs; as "potential frictional force", disregarding whether the friction
be static or not. The value of f5{?) expresses the frictional force that occurs as long as the



Guettler 173

limiting (static) frictional force (f;) is greater than f;?). At the very moment Ji <fsr(?), the

friction will change from static to sliding. Thus, f;,(1) - £, expresses the margin for this change
to happen, at any instant.

RESPONSES TO A PULSE

To estimate the frictional effects of a pulse rotating both in the transverse and the torsional
planes, the following simulations were run: at ¢ = 0, the string is released from an initial
maximum /ransverse displacement (n) at the point of bowing, with decreasing displacement on
both sides toward the bridge and the nut - similar to a pizzicato. (The string is pulled in positive
bowing direction at its center: no torsional displacement.) During one "normal slipping interval
of Helmholtz motion"[10], 0 < ¢ < t, (where t,=2bL/Cpg, and L = string length), there is no
contact between the bow and the string. In this interval the string takes the transverse velocity
Vivy under the bow. At ¢ > 1, , the a static grip is established between the string and the bow,
which now takes the velocity ¥,y = 0.001n /s. The effect of the bow pulling the (reflecting)
string with a constant velocity, is then superimposed on all reflections of V,,, causing the
average frictional force to increase with time.

There are certain time spans where a release might take place, provided the limiting static
frictional force be low enough. However, there are even larger time spans where release cannot
happen, due to the fact that during these, the frictional force "falls in the shadow" of a preceding
force peak of a higher value (indicated by horizontal, dashed lines). When comparing the two
Figures 1 and 2 (next page), one will appreciate the role of the wave-velocity ratio, ¢ , which
is the only parameter changed between the two. During a normal Helmholtz movement of the
string ), the positive peak at /7, =1 will trigger a string release. If the limiting static frictional
force is higher than the potential frictional force at 1 = 7, , the release will be delayed until a
peak high enough does the trick. The next opportunity of triggering appears with the edge rising
to the peak at 7 = T,(1+ ), which is equal to 1.3007, for string A, and 1.2137, for B. In both
Figures 1 and 2, V), arrives at the bow at 1, =7, -1, after the first reflection at the nut.

Figure 3:
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Frictional force on string A when the reflections of an ~ String B: ¥}y, and the Vj,,, are the same as for string A
initial velocity pulse, V,y,, are superimposed on the in figure 5. Notice how the wave velocity ratio (€ =
force originating from a bow pulling the string witha ~ 0.300 for string A; C = 0.213 for string B) determines
fixed velocity (dashed ramp). Force peaks caused by  the positions of force peaks on the time axis.
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Figures 4 a and b:

Waves arriving at the bow (upper graph): waves
arriving from the nut are drawn with solid lines, while
waves arriving from the bridge are dotted.
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TRIGGERING OF ANOMALOUS LOW FREQUENCIES (ALF)

Torsional triggering
During a steady-state oscillation with delayed releases, the reflections of one string flyback will
combine with the fading reflections of the previous string releases. Dependent on the interval
between two slips, old and new reflections may combine to powerful peaks of fsr » which ensure
stable triggering, or they can lead to cancellation of the same. Figures 5 a and b show how string
A forms new fundamental periods, which are stable and prolonged by 29.3%. This is somewhat
more than a major third step down. For string B (Figures 6 a and b), the prolongation is about
20.4%, corresponding to about a minor third down (which seems to be normal for most violin
strings). In both cases the triggering is stable, with reasonable "reserves" of Jsr» as compared to
the limiting static frictional force (dashed horizontal line). Notice that all the figures in this
article are drawn to the same scales with respect to their coordinates, for ease of comparison.
The bow force tolerances are less in Figs. 5 and 6 than they are during the Helmholtz motion
of Fig. 4. This is due to the partial cancellation that takes place if n7,(1+) = (mt, through mt,
+1, ) (Where n=1,2,3...and m = 1,2,3...). While the left side of this expression indicates integer
multiples of the time of the first "torsional force maximum", the right side indicates time spans
of "transverse force reductions". In Figs. 1 and 2, torsional maxima and transverse minima are
marked a and v respectively, while integer multiples of 1+ are marked *. The width of the
force reduction is about #, when m = 1, but increases with higher values of 7, due to dispersion
and losses during the reflections. Concerning string A, the "soft cancellation” takes place near
the time ¢ ~ 3.97, after a string release (i.e., * and v falling close when n =3, and m = 4 ). For
string B, the corresponding values are ¢~ 4.857, ; n=4, and m = 5. It was noticed during the
simulations that cancellation was a greater problem for lower bow velocities than for higher. For
example: when string B was bowed with 1/4 of the bow velocity used for Figure 6, the typical
sequence of periods would be: [T, (1+ Q)], [T, (1+ &)1, [T, (1+ )], [T, (1+ & + ¢, &)]..., with
each fourth period additionally prolonged by ¢, C. This implies that the last triggering is initiated
by a torsional wave arriving at the bow affer a second reflection at the nut.

Due to the nonlinear behavior of the system, as well as the combinations of multiple reflections,
it is difficult to give exact equations concerning prolongation, etc. But, from the expressions
above, one can derive the following "thumb rules", which may show useful in some practical
applications: For a stable, lowered frequency (f,, ) triggered by torsional waves, the approximate
wave velocity ratio (£) can be found through the equation:

- 1; [£,(1-B) >F,yp > Lo_ 1

) ‘- 2-p  T,re,

The best estimation of £ is done if B is small, because then a narrow triggering pulse is created,
and triggering bound to happen near to its peak, i.e., near 1 =T, (1+ &). The frequencies most
likely to occur as results of torsional triggering are:
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Figure 5: Figure 6:
String A: when combining the bow velocity used When combining the bow velocity used for the
for the simulations of Fig. 4, with a higher bow simulations of Fig. 4, with a higher bow force, a
force, a prolongation of the periods between slips prolongation of the periods between slips of
of approx. 29.3% is obtained. approx. 20.4% is obtained with string B.

(4) fALF: 1 ; (H:Ofltz--';c>_)

T, (1+Q) +nt, t,

Torsional triggering, as described above, requires an efficient transformation between transverse
and torsional waves when hitting the bow. The factor of transformation from transverse to
torsional velocity at a non-compliant bow is equal to -Zz/Z1or » While the transverse reflection
factor is -Zqyp/Zpy, and the transmission coefficient Zoyp/Zror  Correspondingly, the
transformation from torsional to transverse velocities is equal to -Zgy/Zgy » and the torsional
reflection factor equal to -Z,,5/Z ;g , While the transmission coefficient is Z,.,/Zp,» Hence, the
chances of achieving a comparatively high, "torsional" f;; increase as the value of Q approaches
unity. During sliding friction, partial signals (transverse and torsional) equal to f; /2Z,, and f;
2Zog are superimposed on the partial signals arriving at the bow; "f{" being the frictional force
as function of the resulting relative velocity between the string surface and the bow. Equally
important are the Q-values of the higher torsional modes, as these determine the shape of the
returning pulse and its triggering potential. It is the author’s experience that torsional triggering
is more easily obtained on the violin than on the double bass, a circumstance which may indicate
a difference in the torsional damping.
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Figure 7:

When applying a bow force four times
higher than the one used for the
Helmholtz motion of Fig. 4, a period
prolongation of approx. 100% is obtained.
The triggering is here caused by
transverse waves after nut reflections, as
opposed to the Figures 5 and 6, where
torsional waves did the triggering.

Transverse triggering

As can be appreciated from Figures 7
a and b, a transverse wave can trigger
a slip when arriving at the bow after
one or more reflections at the nut.
Similar to eq. (4), a set of possible
periods 1/f,, r exits, all spaced with
intervals of approximately ¢,
However, the increased duration of
the force drop, which was mentioned
earlier, adds to the period and is
indicated as a corrective term,
"width", in the equation:

n = 1,2,3..)

One important contributor to this "width" term is the interaction between two reflections
experienced by the transverse fly back pulse as it hits the bow when returning after a nut
reflection. These two, which appear in quick succession and rejoin in transverse form, are:

(1) the transverse, immediate reflection at the bow (at = 0) and (2) the repeated reflections
between the bridge and the bow, consisting of transformed, torsional waves (returning to the bow
where they retransform to traverse at t = Ct,, 2(t,, 3&t,, ... ). Their combined reflection builds
up in steps during the static friction. For a non-compliant bow in combination with a bridge
totally reflecting transverse and torsional waves, one can estimate a time constant, which outlines
the first part of this non-continuous function (see eq. 6, Z;,x/Zcyp being the reciprocal of the
transverse transmission coefficient). For bridge reflections including losses, the time constant will
be even greater. Notice that an increase of B also implies an increase of the time constant of eq.
(6), thus contributing to the wide term and the delay of triggering:
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(6) Rop(t) = exp[-(t+(t,) /1] -1 (0,2 t<¢t)
. _ ¢ty
where: T = T0(Z,/ 7o)

Paths of triggering waves Figure 8:

Basic signal paths for

—> a) Helmbholtz motion, (i.e., triggering at nT,)

I W_j b) Torsional triggering (at nT,(1+5))

‘—
€
( 3, c) Transverse triggering (at n(7,+t,)).

Other signal paths are possible, but most likely as
<€— Transverse waves combinations of a) and one or more of the extra

— Torsional waves loops of b) and c).
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