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ABSTRACT

A bowed string bears the possibilities of producing
steady state oscillations in numerous ways and with a
great variety of fundamental frequencies. By means of
computer simulations, this paper will show how a
string how a string can be forced to vibrate with lower
fundamental frequencies than the natural first mode
frequency, f,, of the system. These frequencies are not
usually true “subharmonics”, since they are not simply
related to f,. The triggering of slip and stick is often de-
termined by a combination of transverse and torsional
waves and their respective reflections at the bow and
the endpoints of the string. The analysis discusses how
the bowing position and the torsional wave velocity in-
fluence the possible lengths of periods.

INTRODUCTION

In a companion article in this issue, Hanson et al.
[1] show how violin strings can be forced to oscillate at
anomalous low frequencies (ALF) when bowing with
high bow force (bow “pressure”). Graphs of the string
movements demonstrate a number of pitch drop inter-
vals with the string oscillating at steady state with good
stability.

In order to understand the slip-stick triggering
mechanism involved, a computer program capable of
simulating transverse and torsional movements of the
string has been employed. The programmable parame-
ters are: wave impedances and velocities, reflection
functions, bow compliance, bow velocity and “pres-
sure” as functions of time, and their interaction with
the hyperbolic friction characteristic of the string and
rosined bow. The program, as well as the present analy-
sis, is based on D’Alembert’s solution [2] to the wave
equation, where the displacements of waves moving in
opposite directions are shifted with time. The solution
in the continuous form reads:

Ny =n.(x — cf) + n(x + ¢ (1

where 1, , = (partial) string displacement; ¢ = the
propagating speed of the wave; x = position on the
string; t = time.

Two sets of eq. (1) are used: one for transverse-and one
for torsional waves. In the simulation program, these
interact only at the point of bowing, and only through
frictional force. Dispersion and losses are carried out
by reflection functions “at the string terminations”. In
general, the concepts of string simulation developed by
McIntyre, Woodhouse and Schumacher [3][4][5][6][7]
have been adopted.
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SIMULATION PARAMETERS

Signal: throughout this paper the term “signal”
means derivative of (partial) displacement with respect
to time, i.e., 81, ,(x) /8t. The following fixed parame-
ters are used for the simulations of the strings A and B
as presented in the graphs:
transverse nut reflection (response to a signal impulse at

t = 0): R(t) = —1/[c{(2m)] exp[—0.5(t/c)], i.e., a

“Gaussian function” (for convolution), where ¢ =

0.00357T,, and T, = 1/f, = the natural transverse

oscillating period of the string. In the discrete ver-
sion, the normalized sum of the function equals

-1:
transverse bridge reflection (response to a signal step at

t = 0): Ry(t) = 0.077 exp(—t/1,)—1, i.e., a “Cremer

function” [8], where T, = 0.049 T;

torsional nut and bridge reflections (responses to a sig-
nal step at t = 0) respectively: R,(t) = R (1) =
exp(—t/t,)—1, where 1, = 0.016 T;

transverse and torsional wave velocities, respectively:
Crry and cq,. In the figures showing string A, the
ratio Cx,/Cror = § = 0.3, while in figures showing
string B, { = 0.213 (which gives torsional first
mode frequencies of 3.2f; and 4.15f, respectively
when accounting for the phase shifts of R (t) and
R,(1));

return time of transverse reflected waves (with paths:
bow/nut/bow and bow/bridge/bow) respectively: t,
= 2(1-p)L/cyy and t, = 2BL/c gy, Where B = 0.045
= the distance from the bridge to the bowing point
divided by the total string length (L). A normal
slipping interval would be equal to t,;

ratio of torsional and transverse impedances:
Q =Z g /Ziog = 0.65, where Z,,,, and Z,, = the
characteristic wave resistance of transverse and
torsional waves, respectively. To facilitate compari-
son while emphasizing the effects of torsion, the
chosen value of Q is kept constant throughout the
simulations, regardless of the wave velocity ratio {;

impedance of the bow is infinite, i.e., the bow is not
compliant; the bow excites the string in one single
point;

the frictional characteristic of the rosin is hyperbolic,
and matches values used by Schumacher/Wood-
house in ref [9]. In their terminology v, ., = —1.5v,,
indicating a friction coefficient that has fallen half
way to its asymptotic minimum value for a relative
bow/string velocity of 2.5 times the bow velocity;

Q-values of the two strings, A and B are shown in
[Figure 1].
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Figure 1: Transverse and torsional damping of free os-
cillations of the simulated strings A and B.

POTENTIAL FRICTIONAL FORCE

The frictional force (fs;) between the non-
compliant bow and the string during the static intervals
may be expressed through the following equation
(which can be derived from ref. [6], eqs. (B13) and
(B14)):

Js0 = 2Z 108 Waow = 25 Vg ) )

where Z.,,; = the combined wave impedance of the

string, i.e.,
Zigy Zior)(Zrgy + Zior)s

Vgow = velocity of the bow;

Vw(t) = signal of partial wave i, arriving at the
bow:

vy, (t) and v,,(t) = transverse signals propagating
away from the nut and the bridge, respectively;
Vws(t) and wy,(t) = torsional signals [10] propagat-
ing away from the nut and the bridge, respectively.
The sum of the four partial signals (i.e., velocities)
gives the surface velocity the string would have
taken at the point of bowing without friction.

It is convenient to refer to fg. as “potential frictional
Jorce”, disregarding whether the friction be static or
not. The value of f . (t) expresses the frictional force
that occurs as long as the limiting (static) frictional
force (f) is greater than fg (t). At the very moment
f, < fi(t), the friction will change from static to slid-
ing. Thus, fi(t) — f_ expresses the margin for this
change to happen, at any instant.

PULSE RESPONSES

To see how a velocity pulse is reflected and keeps
transforming between transverse torsional waves, the
following simulations were run: at t = 0, the string is
released from an initial maximum transverse displace-
ment (1) at the point of bowing, with decreasing dis-
placement on both sides toward the bridge and the
nut—similar to a pizzicato. (The string is pulled in
positive bowing direction at its center: no torsional
displacement.) During one “normal slipping interval”,

0 =t < t,, there is no contact between the bow and
the string. When t = t,, contact between bow and
string is established, and the limiting static friction is
kept high enough to ensure a static grip. We thus have
an initial transverse “velocity pulse” (V) which is t,
wide and — nfy/B(1 — B) high, functioning as a test sig-
nal, and can observe its reflections and transforma-
tions. When interpreting the graphs, it should be
remembered that the D’Alembert equation gives partial
velocities (signals) even for a string held with fixed
displacement.
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Figure 2: String A: transverse and torsional waves arriv-
ing at the bow after nut and bridge reflections of a ve-
locity (signal) pulse V.
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Figure 3: String B: transverse and torsional waves arriv-
ing at the bow after nut and bridge reflections of a ve-
locity (signal) pulse V.

In [Figures 2 and 3] (showing responses of the
strings A and B, respectively) the bow velocity is zero.
The first torsional wave of any dynamic significance is
initiated at the time t = t, after the release of the string.
This is the point of time at which the transverse wave
the first time returns to the bow after having been re-
flected at the nut. Torsional waves are then excited by
the string rolling up the fixed bow. (Torsional velocity
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is to be understood as string radius times radians per
second, with the convention that the angle of twist is
negative when the translational displacement is positive
on a fixed bow holding a static grip. In the [Figs. 2 and
3], the scaling is equal to that of the transverse velocity,
or signal, although drawn above for clarity.) This first
torsional pulse will appear at the graphs at the time t =
t, + t,{, reaching its maximum at t = T, + t,{, after
several trips between the bridge and the bow.

See [Figure 4] for detail of how a (positive)
torsional signal arriving at the bow, builds up in the in-
terval t, + ,{ <t < T, + t,{. When a transverse unit
velocity pulse coming from the nut, arrives at the bow
at t = t,, one part is reflected there while another is
transmitted. However, the transmitted transverse wave
will have a torsional twin with opposite (i.e., negative)
sign. At t = t, + t,{ this twin returns to the bow with a
positiv value. Thus, in the interval t;, < t < T, the
frictional force (fy;) will have negative values, causing
opposing (negative) torsional and transverse signals to
be created. These are superimposed on the arriving sig-
nals and emitted in both directions. At t = T;, when
the termination of the unit pulse coincides with the re-
turn of its reflected front, f; takes a value closer to
zero, letting the torsional signal remaining between
bow/bridge/bow pass the point of bowing with much
smaller opposition.

Frictional force -
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Figure 5: Frictional force on string A when the reflec-
tions of an initial velocity pulse, V,y,, are superimposed
on the force originating from a bow pulling the string
with a fixed velocity (dashed ramp). Force peaks
caused by torsional nut reflections occur in intervals of
approximately t, (marked a), starting at t = T(1 + 0).
These are potential triggers of slipping. The points of
time for force reductions (marked v) are determined by
transverse nut reflections of the initial string fly-back,
and occur with the same intervals. Integer multiples of
T,(1 + {) are marked *, see text.
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Figure 4: When a transverse unit velocity pulse (t,
wide, and propagating away from the nut) arrives at the
bow, a torsional pulse will build up after several reflec-
tions at between the bridge and the bow. If the unit
pulse arrives at t = t,, the torsional pulse arriving at the
bow from the bridge, will reach its maximum at T, +
€t,. Simulation parameters (with reduced losses): R,(t)
= —§; R,(t) = exp(—t/1,)—1, where 1, = 0.0016 T; Q =
0.65; { = 0.200. Certain points of time are marked for
comparison with figures 2and 3:a=1t,b=1t, +{t,c
=T, d =T, + &,
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Figure 6: String B: V,,, and V,,, are the same as for
string A in [Figure 5]. Notice how the wave velocity
ratio ({ = 0.300 for string A; { = 0.213 for string B) de-
termines the positions of force peaks on the time axis.

In the [Figures 5 and 6] the bow takes the velocity
of 0.001n/s at the time t = t,. The effect of the bow
pulling the (reflecting) string with a constant velocity, is
then superimposed on the reflections of V,,, causing
the average frictional force to increase with time. There

—10—
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are certain time spans where a release may take place,
provided the limiting static frictional force is low
enough. However, there are even larger time spans
where release cannot happen, due to the fact that dur-
ing these, the frictional force “falls in the shadow” of a
preceding force peak of a higher value (indicated by
horizontal, dashed lines). When comparing the two fig-
ures, one will appreciate the role of the wave velocity
ratio, , which is the only parameter changed between
the two.

During a normal Helmholtz movement [11] of the
string, the positive peak at t/T, o = 1 will trigger a string
release. If the limiting static frictional force is higher
than the potential frictional force at t = T,, the release
will be delayed until a peak high enough does the trick.
The next opportunity of triggering appears with the
edge rising to the peak at t = T (1 + ), which is equal
to 1.300T, for string A, and 1.213T, T, for B.

[Figures 7 a and b] show, respectively, waves arriv-
ing at the bow and frictional forces, as they appear dur-
ing Helmholtz motion of string A.

TORSIONAL TRIGGERING OF ANOMALOUS LOW
FREQUENCIES (ALF)

During a steady-state oscillation with delayed re-
leases, the reflections of one string flyback will com-
bine with the fading reflections of the previous string
releases. Dependent on the interval between two slips,
old and new reflections may combine to powerful peaks
of fg;, which ensure stable triggering, or they can lead
to cancellation of the same. [Figures 8 a and b] show
how string A forms new fundamental periods, which
are stable and prolonged by 29.3%. This is somewhat
more than a major third step down. For string B ([Fig-
ures 9 a and b]), the prolongation is about 20.4%, cor-
responding to about a minor third down. In both cases
the triggering is stable, with reasonable “reserves” of
fsr, as compared to the limiting static frictional force
(dashed horizontal line). Notice that all the figures in
this article are drawn to the same scales with respect to
their coordinates, for ease of comparison.

The bow force tolerances are less in [Figs. 8 and 9]
than they are during the Helmholtz motion of [Fig. 7].
This is due to the partial cancellation that takes place if
nT(1 + §) ~ (mt, through mt, + t,) (where n = 1,2,3...
and m = 1,2,3 ...). While the left side of this expres-
sion indicates integer multiples of the time of the first
“torsional force maximum”, the right side indicates
time spans of “transverse force reductions”. In [Figs. 5
and 6], torsional maxima and transverse minima are
marked 4 and v respectively, while integer multiples of
1 + { are marked *. The width of the force reduction is
about t, when m = 1, but increases with higher values
of m, due to dispersion and losses during the reflec-
tions. Concerning string A, the “soft cancellation” takes
place near the time t ~ 3.9T, after a string release (i.e.,
* and v falling close when n = 3, and m = 4). For string
B, the corresponding values are t ~ 4.85T; n = 4, and
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Figure 7: Waves arriving at the bow (a—upper) and
frictional forces (b—lower graph) when string A is
bowed to a normal Helmholtz motion. Spikes of the ac-
tual frictional force trigger string releases at t/T, =
1,2,3, etc. (With numeric simulation these are not usu-
ally recorded as f;, this value not lasting till the conclu-
sion of the time step: here they are drawn to full
height.) The height of fi. above the wavy act.fr.force,
determines the bow force tolerance. The dashed hori-
zontal line shows the /imiting static frictional force ap-
plied for the simulation.

m = 5. It was noticed during the simulations that can-
cellation was a greater problem for lower bow velocities
than for higher. For example: when string B was bowed
with 1/4 of the bow velocity used for [Figure 9], the
typical sequence of periods would be: [T, (1 + §)], [T,
(1 + Q) [Ty (1 + ), [Ty (1 + &+ t,0)] ..., with each
fourth period additionally prolonged by t,{. This im-
plies that the last triggering is initiated by a torsional
wave arriving at the bow after a second reflection at the
nut.
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Figure 8: String A: when combining the bow velocity
used for the simulations of [Fig. 7], with a higher bow
force, a prolongation of the periods between slips of
approx. 29.3% is obtained. The force peak at /T, = 1
would have triggered a Helmholtz motion, had the lim-
iting frictional force been lower.

Due to the nonlinear behavior of the system, as
well as the combinations of multiple reflections, it is
difficult to give exact equations concerning prolonga-
tion, etc. But, from the expressions above, one can de-
rive the following “thumb rules”, which may show
useful in some practical applications: For a stable, low-
ered frequency (f,, ) triggered by torsional waves, the
approximate wave velocity ratio ({) can be found
through the equation:
tmto g

=

s S -1
iai o4 VIO SR o

I 3
The best estimation of £ is done if B is small, because
then a narrow triggering pulse is created, and triggering
bound to happen near to its peak, i.e., neart = Ty [+
). The frequencies most likely to occur as results of
torsional triggering are:

1
T, (1 +08) + m,

f,«u-‘ =
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Figure 9: When combining the bow velocity used for
the simulations of [Fig. 7], with a higher bow force, a
prolongation of the periods between slips of approx.
20.4% is obtained with string B.

The prospect of having eq. (3) confirmed by physical
measurements on real strings is particularly appealing,
as this could provide a quick and handy method for
first estimation of torsional velocity—at least for some
strings.

Torsional triggering, as described above, requires
an efficient transformation between transverse and
torsional waves when hitting the bow. The factor of
transformation from transverse to torsional velocity
[10] at a non-compliant bow is equal to =Z b ZroRs
while the transverse reflection factor is —Z . 5/Z gv»
and the transmission coefficient Z ,/Z .. Corre-
spondingly, the transformation from torsional to trans-
verse velocities is equal to —Z.,4/Z..,, and the
torsional reflection factor equal to —Z ,/Z ., While
the transmission coefficient is Z_,/Z .- Hence, the
chances of achieving a comparatively high, “torsional”
fsr increase as the value of Q approaches unity. During
sliding friction, partial signals (transverse and tor-
sional) equal to f/2Z ., and fy/2Z .. are superim-
posed on the partial signals arriving at the bow; “fy”
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being the frictional force as function of the resulting
relative velocity between the string surface and the bow.

TRANSVERSE TRIGGERING OF ALF

As can be appreciated from [Figures 10 a and b], a
transverse wave can trigger a slip when arriving at the
bow after one or more reflections at the nut. Similar to
eq. (4), a set of possible periods 1/f,, . exits, all spaced
with intervals of approximately t,. However, the in-
creased duration of the force drop, which was men-
tioned earlier, adds to the period and is indicated as a
corrective term, “width”, in the equation:

1
T, + nt, + width ’

-)CILF ==

One important contributor to this “width” term is the
interaction between two reflections experienced by the
transverse fly back pulse as it hits the bow when return-
ing after a nut reflection. These two, which appear in

(n=123..) (5)
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Figure 10: When applying a bow force four times
higher than the one used for the Helmholtz motion of
[Fig. 7], a period prolongation of approx. 100% is ob-
tained. The triggering is here caused by transverse
waves after nut reflections, as opposed to the [Figures 8
and 9] where torsional waves did the triggering.
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quick succession and rejoin in transverse form, are: (1)
the transverse, immediate reflection at the bow (at t =
0) and (2) the repeated reflections between the bridge
and the bow, consisting of transformed, torsional waves
(returning to the bow where they retransform to tra-
verse at t = {t,, 2Ct,, 3Ct,, ...).

Their combined reflection builds up in steps dur-
ing the static friction. For a non-compliant bow in com-
bination with a bridge totally reflecting transverse and
torsional waves, one can estimate a time constant,
which outlines the first part of this non-continuous
function (see eq. 6 and [Fig. 11]):

Reys() = exp[—(t+L2,) /1] —1

= &,
o/ Z s

O, =t<1t) (6
where: T

(Z1or/Zcoyp being the reciprocal of the transverse
transmission coefficient).

For bridge reflections including losses, the time con-
stant will be even greater. Notice that an increase of B
also implies an increase of the time constant of eq. (6),
thus contributing to the wide term and the delay of
triggering.

Reflections combined at the bow, Rcwus(t):

e S ——

Relative velocity -

1.4 il - [ e I A 1
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Figure 11: Combined reflections at the bow. The dotted
line shows the function Ryy(t), which outlines the
steps of a double reflection (solid line) (2 = 0.65, see
text).

BOW COMPLIANCE

All the above analyses are based on a non-
compliant bow. With bow compliance, the picture be-
comes more blurred: simulations show that the expres-
sion “t,” of equations (4) and (5) should be substituted
with “t, + d”, where “d” is a small value indicating the
delay in the (peak) signal build up, caused by the losses
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or phase shifts of the reflecting bow. Also: the compli-
ant bow transfers (“leaks”) more of the transverse
flyback pulse to the bridge, which increases the role of
the bridge reflection of the same.

CODA

Due to possible delays in the triggering of the slips,
a number of obtainable fundamental frequencies exist
below the normal first mode frequency. For these, the
bow force tolerance is generally much smaller than for
the string in Helmholtz motion. The position of the
bow partly determines which frequencies can be pro-
duced. However, with torsional triggering of periods
less than T, + t,, the effect of a changed position is
negligible unless the triggering pulse coincides with a
wave causing cancellation. For transverse and torsional
triggering of notes lowered about one octave or more,
an increase of B causes a rise in pitch. All these fre-
quencies are results of forced oscillations in a quasi-
transitional state: even on a lossless system they will
vanish as soon as the bow leaves the string.
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