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Summary
In this study, the conditions for establishing Helmholtz motion in a bowed string are studied analytically and
by computer simulations. For simple models of the bowed string, the bow force and bow acceleration are the
two operative parameters during the creation of the Helmholtz motion. Parameter spaces for bow force and bow
acceleration during the build-up of a regular Helmholtz motion are computed. These spaces have triangular shape
in the initial part of the transient. Similar results are observed with more advanced simulation models.
PACS no. 43.75.De

1. Introduction

The steady-state dynamics of a bowed string oscillating in
Helmholtz motion seems in many respects well analysed
and understood. The creation of the Helmholtz motion,
however, has not been subject to equally comprehensive
analyses, in spite of its relevance for the player. The works
by Schelleng [1, 2] describe the criteria for maintaining
a steady Helmholtz motion in a bowed string. Given the
bowing position, the characteristic wave resistance of the
string, and the impedances of the string terminations, the
bow force (“bow pressure”), and bow velocity constitute
the two control parameters of the string motion. During
the creation of the Helmholtz motion, however, the bow
force and bow acceleration are the two operative parame-
ters, as shown in this study. If a proper Helmholtz motion,
and thus a full tone, is to be quickly established, these two
control parameters must be kept within certain limits. If
not, a periodical slip-stick triggering is not likely to de-
velop during the first few periods.

2. The Helmholtz motion in steady state

Figure 1 shows the behaviour of a simple model of a
bowed string in steady-state Helmholtz motion. For almost
the entire period, the friction force between bow and string
stays nearly constant, with the exception of some small
ripples. Only once a period, when the sum of the velocity
waves returning from the bridge and nut suddenly takes a
high magnitude with a direction opposite to that of the bow
velocity, the friction force will rise and form a spike. This
force spike must reach the limiting static friction force be-
fore a string release can take place. For the discussion on
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the creation of the Helmholtz motion to follow, it is impor-
tant to notice the features of the velocity waves returning
to the bow after reflections at the bridge and nut, respec-
tively: In the d’Alembert solution to the wave equation
(see Appendix A1), with a rational bowing position, the
Helmholtz motion gives a stepwise descending velocity
signal returning from the bridge, and a stepwise ascending
signal returning from the nut (relative to a positive bow ve-
locity). As will be shown, the reflections from the bridge
will build up a descending velocity signal as soon as the
bow starts pulling the string out of equilibrium. The re-
maining task in the creation of a regular Helmholtz motion
is simply to achieve a periodic pattern of reflected veloc-
ity pulses from the nut with increasing magnitudes in the
course of the transient.

The simulations shown in Figure 1 are based on a rel-
atively unsophisticated model, giving a clean and sim-
ple sketch of some basic features during steady-state
Helmholtz motion. In particular, the steps of the return-
ing waves are clearly visible. Some rounding of the steps
takes place, due to frequency-dependent losses in the re-
flection functions for the bridge and nut. Higher modes
are heavily damped by modelling the bridge and nut ter-
minations with stiffness, and resistances matching that of
the string. In order to maintain the steady-state oscillation,
lost energy has to be replaced during every cycle, which
leads to the small ripples seen in the friction force during
stick. More realistic loss parameters would have given a
more “nervous” picture, to which also string torsion, due
to the bow’s tangential excitation, would have contributed
considerably.

During the last years, many characteristic features have
been included in the simulations of the bowed string, in-
creasingly adding to the degree of realism. String torsion
[3], reflection functions including string stiffness [4], fi-
nite width of bow hair ribbon [5], bow resonances [6], and
“plastic” friction characteristics [7], are examples of im-
portant advancements in modelling.
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Figure 1. Simulation of the Helmholtz motion in steady state.
Upper panel: Friction force (thick line); “potential friction force”
(thin line), i.e. the force that would be acting on the bow if
the limiting static frictional force were instantly raised to a suf-
ficiently high level (see Appendix A2). Middle panel: Veloc-
ity waves returning from the bridge (thin line) and nut (thick
line). Lower panel: String velocity at the point of bowing (thick
line); sum of the velocity waves returning from the bridge and
nut (thin line). Bow speed 30 cm/s; relative bowing position
� � ���. Compliant string terminations with resistances match-
ing the wave resistance of the string. “Hyperbolic” friction char-
acteristic (see Figure 15).

Schelleng’s analysis of the Helmholtz motion [1] was
based on an even simpler model than that in Figure 1,
suggested by Raman [8]. By defining the string termi-
nations as purely resistive (or dominated by resistance),
one may model the reflection coefficient as a real fraction:
� � �R�Z���R�Z�, whereR andZ are the bridge resis-
tance and the characteristic wave resistance of the string,
respectively. Figure 2 shows Schelleng’s method of anal-
ysis. The friction force undergoes a cycle for each fun-
damental period. Let us term the bowing position relative
to the string length �. In cases where ��� is an integer,
the friction force will reach maximum magnitude in the
middle of the stick interval (disregarding the spike in fric-
tion force initiating the transition from stick to slip). The
moment of this force maximum is marked A in the fig-
ure. This point defines a lower limit in bow force for the
given combination of bowing speed and bow position: If
the limiting static frictional force is not equal to or higher
than the friction force at A, the string will make a (sec-
ond) slip at this point. At the other extreme, an upper limit
in bow force is defined by the friction force at point B,
the nominal moment of release. If the limiting static fric-
tional force exceeds the value of the “potential frictional
force” at this point, a regular slip will not be triggered as

Figure 2. Simulation of forces and velocity wave patterns in a
model with purely resistive string terminations (Raman model).
These graphs illustrate the waveforms upon which Schelleng
based his analysis of bow-force limits. Upper panel: Friction
force (thick line); “potential friction force” (dotted line). Lower
panel: Velocity waves returning from the bridge (thin line) and
nut (thick line). The string is slipping through the first tenth
of each nominal period, during which time interval the fric-
tion force is equal to �dFZ . The points indicated by A and
B are the critical moments for determining the lower and up-
per limits in bow force, respectively (see text) (Relative bow-
ing position � � ����. Reflection functions at bridge and nut:
�BRG � �NUT � ����, “hyperbolic” friction characteristics).

the Helmholtz kink passes under the bow. The “potential
friction force” is a useful quantity, defined as the force that
would be acting on the bow due to the combined effects of
bow velocity and velocity waves returning from the bridge
and nut, provided that the limiting static frictional force
was sufficiently high to keep the string sticking (see Ap-
pendix A2).

On basis of the periodic rise in static friction force above
the dynamic (sliding) friction, Schelleng calculated the re-
quirements for maintaining the Helmholtz motion to be
(here quoted in condensed form)

��s � �d��

Z
�

vb
FZ

�
���s � �d��

�R

Z�
� (1)

�� � Z��R�, where �s and �d are the limiting static, and
the dynamic (sliding) friction coefficients, respectively, �
is the bowing position relative to the string length, Z is the
characteristic wave resistance of the string, vb represents
the bow speed; FZ is the bow force (often termed “bow
pressure”) and R the string-termination resistance (repre-
senting all losses).

These equations seem in general to be qualitatively cor-
rect, and have shown to be most valuable in evaluations of
the dynamics of the bowed string. A main uncertainty lies
in the difficulty to define an appropriate string termination
resistance for a real instrument, and taking the torsional
component of the string motion into account.
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3. The build-up of friction forces during a
bowed attack

When starting a bow stroke, the string player has in prin-
ciple three options at hand:

1. starting the bow “from the air”, i.e., with a certain bow
speed, but from zero bow force

2. starting the bow “from the string”, i.e., with some bow
force, but from zero bow speed

3. starting the bow from zero bow speed and zero bow
force.

It is the author’s experience as a professional string
teacher and player that violinists often utilise the first strat-
egy when introducing the first note of a singing musical
phrase, while their colleagues on the heavier string instru-
ments (cello, double bass) more often prefer to initiate the
attack with a certain string contact, also when aiming at
gentle onsets. The reason for this most probably lies in
the difference of transient duration, as any starting noise
tends to last longer and thus be more disturbing on the
lower-pitched instruments. For all string players, however,
strategy (1) will unquestionably come to use when play-
ing a true legato slur from one string to another. Expe-
rienced players of cello and double bass therefore often
mask the inevitable multiple-slip noises resulting from this
approach by letting the sound of the “old” string over-
lap while the sound of the “new” string is building up.
This is simply a matter of changing the bow angle slowly.
Within a singing phrase not involving string crossings,
however, accomplished string players tend to keep the bow
in good contact with the string between strokes, as any lift-
ing would disturb the sonority and break up the musical
stream. For this reason, string students spend much time
practising inaudible bow changes, as well as clean onsets
of separate tones, with the bow in full string contact. The
present study is focused on what might be a good strategy
for obtaining the Helmholtz motion, and thus a full sound
as quickly as possible, when starting the stroke in the latter
manner, i.e., “from the string”.

In order to do so, we shall first pursue an option that is
not available to the player: starting the bow stroke instan-
taneously, “switched on”, with both bow speed and bow
force at fixed nonzero values. We will do so simply be-
cause this draws the clearest picture of what sets the lim-
its when trying to obtain periodic string releases. For the
same reason, we shall start the analyses with the simplest
possible bowed-string model.

During stick on a flexible string in a loss-free system,
excited (in a single point) by a bow starting with the con-
stant velocity v� at t � ��, the static friction force can be
expressed as

fST �t� � (2)

�Z

�
v� �

�
�

fST �t� �T � � fST �t� ��� ��T �

�Z

��
�

where T is the fundamental period.

Here the expression within the square brackets describes
the sum of waves returning to the bow after total reflection
at the respective string terminations. (E.g., the term ��T
indicates a time delay on the string equal to ��L�c, for
waves propagating from bow to bridge to bow, where L is
the string length, and c the wave propagation speed.) The
two time lags, and the loops they make with respect to fST
on the left side of the equality sign, accumulate the string’s
force/velocity history.

If �� � �� is several times larger than �, the friction
force, fST �t�, will take the value of �Zv� in the time inter-
val �� � t � �T , values of �Zv� and �Zv� respectively
in the intervals �T � t � ��T and ��T � t � 	�T ,
and continue with this increment until the time �� � ��T ,
where an extra force step occurs. Figure 3 describes the sit-
uation. The friction force builds up quickly in steps until a
slip occurs. The picture becomes particularly simple when
����� and � have an integer ratio. Apart from discontinu-
ity of the steps, the friction force is nearly proportional to
the bow’s displacement, resembling the reactive force of a
compressed spring.

In the simulation plotted in Figure 3, a raise in the lim-
iting static frictional force at the instant of capture (i.e., at
the time �T after the release) was programmed in order to
avoid further slips. After the single slip, waves returning to
the bow on the bridge side experience a positive offset with
magnitude equal to the relative velocity (vbow � vstring)
that was experienced during the slip itself, while on the
nut side, returning waves display superimposed discrete
pulses of the same magnitude, and width equal to �T .

For later analyses we shall need a linear function to ap-
proximate this force buildup before any slip has occurred.
The discussion to follow will reveal that constant-speed
bowing is not the most illuminating case to consider: If the
bow is allowed to accelerate, new effects appear, and the
value of acceleration has a critical influence on the string
behaviour. With this in mind, equations (3) and (4) have
been written in a form which allows uniform bow acceler-
ation at rate a.

By smoothing the steps (see the fractions with corre-
sponding lines drawn in Figure 3) we can estimate the fric-
tion force to be close to fST �t�, which we will define as
our “function of static friction force”:

fST �t� 
� �Z

�
v� �

t�at� �v��

�T���� ��

�
� (3)

where v� is the bow velocity (starting at t � �) and a is
the bow accelaration (starting at t � �).

A description of the development of equation (3) is
found in Appendix A3. The function of equation (3) con-
stitutes the first one of two expressions that appear prac-
tical when the criteria for periodic string releases in the
simple system are to be defined in section 5. The sec-
ond function, which concerns the slip, expresses a nega-
tive friction force, superimposed on the static friction force
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Figure 3. Friction-force build-up, and velocity waves returning to
a bow with constant speed–one string flyback included. When a
string is bowed with constant speed, returning waves build up in
steps. A slip (i.e., a negative string velocity pulse) will be super-
imposed on these waves after having been reflected at the string
terminations, but only as discrete pulses for the ones returning
from the nut. In this simulation the limiting static frictional force
was raised at capture (after �T ), in order to see the effect of
one slip only. Dotted lines indicate the situation without any slip
(�BRG � �NUT � �; friction characteristics: “hyperbolic”).

defined above (confer the reductions in friction force and
bridge-reflected velocity after the slip in Figure 3):

fSL�t� �d� � FZ�d � fST �t�� (4)

With FZ�d held constant over the entire slip, the magni-
tude of fSL will by definition be increasing in the same
interval. We will, however, let these functions rest for a
while, and show a situation where the combination of con-
stant bow speed and bow force provides regular slips, oc-
curring in intervals equal to the fundamental period in the
first part of the stroke. Given ��� is an integer, the picture
appears as described in Figure 4:

In Figure 4 the bow velocity has been chosen to provide
regular periodic triggering for the first ��� � � (i.e., five)
periods. The waves returning to the bow after reflections
at the bridge and nut start out in the same way as they did
in Figure 3. In Figure 4, however, we experience several
successive slips, the reflections of which each time form a
positive “offset” on the bridge side of the bow. These occur
at times �T after each release, and have magnitudes equal
to the relative slip velocity (vbow�vstring). On the nut side
the same reflected pulses stack up, one after the other, in a
cyclic pattern of period �����T , always with the reflected

Figure 4. Friction force and wave build-up in a string bowed with
a constant speed that gives periodic triggering over a few initial
periods. Upper plot: The dashed lines indicate “potential friction
force”, i.e., the friction force that would have occurred if no slip
took place at this instant. Lower plot: The (string-flyback) pulses
stacking up after returning from the nut are indexed in order to
trace their origin. The italic numbers 5. and 6. indicate sufficient
and insufficient pulse heights, respectively (�BRG � �NUT �

�; friction characteristics: “hyperbolic”).

first-slip pulse in front. (Each pulse is indexed with respect
to the slip number so that one can trace its origin.) What
we have are two loops, one on the bridge side, one on the
nut side, with periods �T and �����T , respectively. After
����� (i.e., five) periods, the return of the first-slip pulse–
��� times reflected at the nut–coincides with the time of
the periodic release. This velocity pulse is now oriented in
the bowing direction, and thus reduces the frictional force
considerably at the moment the slip number ��� (i.e., six)
is due to be triggered.

In Figure 4, three time points are markedA, B, andC,
respectively. These indicate critical moments during the
creation of Helmholtz motion and largely constitutes the
base on which the present analysis is founded:

At A (defined as ta � trel � �� � ��T , where trel is
the time of the first string release), the first friction-force
maximum occurs after the initial slip. (With no losses and
a constant bow speed, it actually occurs �T earlier, but
holds the same value until A). This friction-force value
must be no more than the limiting static frictional force if
a premature triggering shall be avoided at this point. The
force maximum at A consequently determines the upper
limit for bow speed if regular periodic triggering of release
shall be obtained. (Remember that each single force step
is �Zvb high and �T wide.)

At B (defined as tb � trel � T ), where a second string
release is supposed to take place in order to establish peri-
odicity, the potential friction force must surpass the limit-
ing static frictional force to trigger the slip. Correspond-
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ingly, the limiting static frictional force determines the
minimum bow speed at this point.

The slip-pulse “offsets” that were mentioned earlier are
determined by the delta �s��d, and give force reductions
proportional to this difference.

Provided the bow speed is kept within the limits defined
at A and B, slips will be regularly spaced with intervals
equal to the fundamental period until the next obstacle oc-
curs at C (defined as tc � trel � ���� � ��T ). At this in-
stant, the initial string-flyback pulse (indexed ”1”) – ���
times reflected between the nut and the bow – coincides
with the nominal time of periodic release. This largely can-
cels the pulse supposed to trigger slip number ��� (see
the arrows marked 5. and 6. in Figure 4, and compare the
respective signals arriving from the nut.) Due to inappro-
priate potential frictional force, no release takes place at
C.

These three critical points in the bowed-string tran-
sient can be compared to the two critical points in the
Raman/Schelleng analysis: In Figure 2, the friction force
must be no more than �sFZ at A. The same goes for the
friction force at A of Figure 4. In Figure 2, the potential
friction force must be higher than �sFZ at B. The same
is true for the potential friction force at both B and C of
Figure 4. In fact, with a system without losses the (mini-
mum) bow-speed requirement at C will always be higher
than the (maximum) bow-speed requirement at A, which
excludes constant bow speed as a strategy for obtaining
Helmholtz triggering in loss- free systems.

In Figure 4 it can also be seen that while waves return-
ing from the bridge form descending steps, as they should
in order to create a Helmholtz pattern similar to that of
Figure 1, response from the nut side fails to shape the as-
cending counterpart.

4. Loss and bow acceleration

Figures 5 and 6 indicate two strategies that may remedy
the triggering failure at time pointC:
(1) By introducing losses at the nut side, the magnitude of
the initial pulse will diminish for each new reflection, thus
reducing its cancelling potential after ��� reflections. Fig-
ure 5 describes the situation. Notice: as long as the bow’s
impedance is infinite and there is no torsion present, the
string sections on both sides of the bow can be considered
separated.
(2) By accelerating the bow, magnitudes of the successive
string flyback pulses will be increasing, which again will
reduce the cancelling potential of the relatively smaller
first pulse. Figure 6 shows the result.

In Figure 5 we notice how the losses at the nut make the
history of the first slip diminish after each reflection there
(see pulses indexed “1” at the lower panel). In Figure 6,
there are no losses, but successive slip pulses are growing
in magnitude due to the acceleration of the bow. In both
examples a certain “stair-case building” takes place on the
nut side as required for establishing the Helmholtz mode,
although it fails in providing the appropriate slopes, yet.

Figure 5. Friction force and wave build-up in a string bowed with
constant speed and 5% loss at the nut. By introducing loss at
the nut side, the waves returning from this end start to shape up
as required for the Helmholtz motion. However, a 5% resistive
loss (i.e., nut reflection coefficient, �NUT � ����) is still inad-
equate to provide regular triggering with the parameters chosen
(�BRG � �; friction characteristics: “hyperbolic”).

Figure 6. Friction force and wave build-up when the bow is given
a small acceleration. By superimposing acceleration on the ini-
tial bow speed, waves returning from the nut start to shape up
as required for the Helmholtz motion. Even greater acceleration
would have ensured regular triggering (�BRG � �NUT � �;
friction characteristics: “hyperbolic”).

Both strategies seem qualified to form adequate wave
patterns, provided loss or acceleration of appropriate mag-
nitude. Apparently there is not much to choose between
them. But, of course, with the losses defined by the sys-
tem, only bow acceleration remains as control parameter
for the player.
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Figure 7. Categories of bowed-string tran-
sients.
Upper panel: number of nominal periods
elapsing before regular periodic triggering
occurs with a high-impedance violin G-
string (set of 33000 simulations: F� �

���Hz; � � ��� � ����). String torsion
is here included.
Lower panel: selected waveforms (string
velocity under the bow) resulting from
different bow-force / acceleration combi-
nations. Musicians mostly try to achieve
bowing-parameter combinations that give
early regular triggering and thus quickly
lead to Helmholtz motion, i.e., waveform
(2). For details on the simulation parame-
ters, see string II of Figure 11.

5. Searching for bowing parameters that
ensure periodic triggering

Guettler and Askenfelt [9] found that string players are
very sensitive to the duration of non-periodic triggering
in bowed violin attacks. “Neutral tone onsets” on an open
G-string (196 Hz) were considered to be of unacceptable
quality if the duration of multiple slips (or prolonged pe-
riods) exceeded 90 (50) milliseconds, or 18 (10) nominal
periods. Dependent on the damping of the system, mul-
tiple slips will normally prevail for quite a few periods
once encountered. String players therefore make an effort
to steer clear of this, and most of them develop a remark-
able skill in avoiding such noises where the music does
not call for it. In the preparation of reference [9], where a
total of 1694 violin attacks were classified by inspection
of the string waveform, 44% were found to be “perfect”
(defined as less than 5 ms elapsing before the occurrence
of Helmholtz triggering). In that study two professional
violin players were asked to perform excerpts from the vi-

olin literature without knowing the purpose of the study.
Consequently they could be assumed to pay no more than
normal attention to clean attacks.

A few successive “perfect attacks” in spiccato (record of
string velocity) are furthermore demonstrated in Figure 6
of reference [10].

Figure 7 (lower panel) shows three typical string veloc-
ity waveforms resulting from different transient bowing
parameters, as computed with a simulation model includ-
ing string stiffness, torsion, bow compliance, and “plas-
tic” friction characteristics (see Figure 11 for system de-
tails). In the white triangle of the upper plot of Figure 7,
combinations of bow acceleration and bow force have pro-
duced “perfect attacks”, like the one shown in waveform
(2) below. At the upper left side of this triangle, one or
more of the initial periods were prolonged, causing irregu-
lar string releases over a number of periods following (1).
At the lower right side, multiple slips occurred quickly, as
the bow was accelerating too much for holding the string
stuck till the end of the first nominal period (3). It can fur-
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thermore be seen from the string waveforms that example
(1) failed at “B”, while example (3) failed at “A”, or just
before that point of time.

Our task shall be to calculate the bowing-parameter
combination able to produce the shortest transient, i.e., a
“white triangle”–if not for this complex string model, at
least for the simple model analysed in the previous sec-
tion.

We shall be searching for equations that comply with
the requirements at the time points A (i.e. ta � trel �
T ��� ��), B (i.e. tb � trel � T ), and C (i.e. tc � trel �
T ���� � ��) as shown in Figure 4. That is: the (potential)
friction force must surpass the limiting static value at time
points B and C, whereas its value must be no more than
the limiting value at pointA, as mentioned earlier. Since a
first string release will take place when f�t� � FZ�s, we
can calculate the approximate time trel to be:

trel �

r
v��
a�

�
T���� ���FZ�s�Z � �v��

a
�

v�
a
� (5)

(a � �, v� � FZ�s��Z). By separating the constant-
velocity bow from the accelerating bow, we get simpler
expressions (the equations are indexed a or b in order to
indicate solutions for bow velocity or acceleration, respec-
tively):

trel � T���� ��

�
FZ�s
�v�Z

� �

�
� (5a)

(a � �, v� � FZ�s��Z) and

trel �

r
T���� ��FZ�s

aZ
� (5b)

(a � �, v� � �). Thus, just after the moment when the
string slips for the first time the resulting friction force may
be expressed, utilising the functions of equations (3) and
(4):

�f�t�
rel

� � fST �trel	 � fSL�trel� �d	

� FZ�s � fSL�trel� �d	 � FZ�d�

Having determined the time and friction force of (i.e., just
after) the first release, the relative velocity, vrelative �
vstring � vbow, is easily found:

vrelative�t
�
rel

� �
FZ�d � �f�t�

rel
�

�Z
�

FZ��d � �s�

�Z
�

By use of the two functions of equations (3) and (4), we
can furthermore conveniently formulate the approximate
requirements of a loss-free system for the time points A
andB, respectively, provided ��� is an integer:

fST �trel � T ��� ��	 � fSL�trel � T�� �d	 � FZ�s� (6)

and fST �trel � T 	 � fSL�trel� �d	 � FZ�s� (7)

The left-hand sides of equations (6) and (7) represents
“static friction force” and “potential friction force”, re-
spectively.

Figure 8. Example of friction force and wave build-up for a string
bowed with constant speed in a non-integer-ratio position. When
exciting the string in a non-integer-ratio position, the patterns of
frictional force and waves returning to the bow become more
complex and hence less suitable for simple algebraic analysis.
As in Figure 4, the periodic triggering fails at C (in this case
not trel � ���� � ��T , but trel � �T ), where the 6th peri-
odic triggering should have occurred. A minor premature slip
can, however, be observed just before that time (� � �����;
�BRG � �NUT � �; friction characteristics: “hyperbolic”; no
string torsion).

Whenever a slip pulse is created during the transient,
it will split and propagate in both directions away from
the bow. On both sides the pulses are locked in be-
tween the bow and the string termination as long as the
bow’s impedance is much higher than the characteristic
impedance of the string (see Figure 3). For each reflec-
tion (at the nut, bridge, or bow) the slip pulse will be
turned around 180 degrees, implying that every time it is
heading toward the bow, it has the same �y��t orienta-
tion as the bow itself. Provided the pulse on the bridge
side has a width equal to �T , it hence represents an un-
interrupted (but not necessarily constant) reduction of the
friction force, as was shown in Figure 3. In equations (6)
and (7), the “slip function”, fSL�t� �d	, thus refer to the
“history” of the initial slip which took place in the time
interval trel to trel � �T . After this (superimposed nega-
tive) force pulse has been ���� � times reflected between
the bridge and the bow, as for equation (6), its last part ar-
rives at the bow at the time pointA, giving a force reduc-
tion (relative to fST �trel � ��� ��T 	) equal to what took
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place at the end of the original slip interval. In equation
(7), the same slip pulse has been ��� times reflected when
the history of its front arrives at the bow at the time of the
supposed release, B, giving a force reduction (relative to
fST �trel�T �) equal to what took place at the beginning of
the original slip interval. Since the magnitude of the slip
pulse is by definition increasing over the slipping interval
(confer equations 4 and 3), this distinction is necessary.

For the same reason we restrict our analysis to cases
where ��� is an integer: to avoid the complication of keep-
ing track of, calculating, and summing a number of in-
stantaneous velocity values derived at different phases of
a series of nonrectangular slip pulses. Figure 8 shows the
effect of excitation in a non-integer-ratio position for the
simple case of constant bow speed in a loss-free system.
Although the main features of Figure 4 are still recognis-
able, details are here considerably more complicated. In
a practical situation, where the width of the bow-hair rib-
bon covers a certain string length, such (local) fluctuations
might, however, be less observable.

Solved for a constant bow velocity, v�, equations (6) and
(7) give together:

���� ��FZ
��s � �d�

�Z� �z �
B

� v� (8a)

�
���� ��

��� ���
FZ

��s � �d�

�Z� �z �
A

(a � �, � � ��	)1 and, solved for a constant bow acceler-
ation, a:

���� ��FZ

�s � �d � �

p
���

s � �s�d
TZ� �z �

B

� a

� ���� ��FZ

h
�
� ����s � �d (8b)

��
q
��� ���

�
���� ����

s � �s�d

ih
��� ���TZ

i
��

� �z �
A

(v� � �, � � ��	). We notice here that in contrast to Schel-
leng’s equation for steady state, i.e., equation (1) (and
our own equation concerning constant bow velocity, equa-
tion 8a), equation (8b) presents bow acceleration as a func-
tion of the string’s fundamental frequency, which is equal
to ��T . This implies longer-lasting transients for ampli-
tude build-up at low pitches. When played on the same
string, acceleration is proportional to frequency. Notice
also that TZ is equal to twice the mass of the vibrating

1 Notice: When estimating constant bow speed in a loss-free system, not
including string torsion,one might – rather than linearising – base the last
expression directly on the step function, which gives

v� � �FZ
��s � �d�

�Z� �z �
A

� (a � �, � � ���)�

string, so there exists an inverse proportionality between
the mass of the string and a.

At pointC–provided ��� is an integer and that previous
slipping intervals have been regular–the condition for slip
can be expressed as the solution to the equation

fST �trel � T ���� � ��� � ����fSL�trel� �d��

�fSL�trel � T ���� � ��� �d�� � FZ�s� (9)

where � is the reflection coefficient at the nut. For �d� and
�d�, see the text below.

The left-hand side of equation (9) represents “potential
friction force”.

The term fSL�trel � T ���� � ��� �d�� of equation (9)
sums up the history of all previous slips (or rather their
fronts) for the bridge side, while the term fSL�trel� �d��
reflects the history of the front of the first slip alone, hav-
ing travelled as a discrete pulse back and forth ��� times
on the nut side. The expression ���� requires a com-
ment: With losses, a slip pulse reflected once at the nut
will have its shape changed, dependent on the frequency-
phase response of the string-termination reflection (includ-
ing string losses). Hence, iterative filtering does not imply
logarithmic reduction of a fixed waveform unless the re-
flection is purely resistive. In the present case, the expres-
sion should be interpreted as “���� is the total coefficient
of ��� nut reflections, with concern to the front part of the
original slip pulse (i.e., the release)”. As long as the string
is excited in an integer-ratio position, it is this part of the
pulse that has the potential of cancelling a ���-th release
at pointC. (For a further discussion on this, see Appendix
A4.) From the equations (10a) and (10b) below, we can
see how the loss on the nut side has substantial impact on
the minimum required velocity (or acceleration). Loss on
the bridge side does not play the same role, but would be
important for smoothing the force build-up during stick.

With an accelerating bow, the relative speed, jvrelativej,
increases from slip to slip during most of the transient (see
e.g. Figures 15 and 16). As we move out on the hyper-
bolic or a similar friction curve, �d diminishes. Since the
effect of this reduction is likely to be quite noticeable at
C, the coefficients of equation (9) are indexed, referring
to the friction parameter operating at the time given as the
first independent variable of the function in question. This
is particularly important for low-magnitude FZ and/or a.
When solving equation (9) we get the following require-
ments at pointC:

v� � ���� ��FZ
�� � �������s � �d�

�Z
� (10a)

and a �

����� ��FZ

h
��� ��	���C � �������s � �d�� � ��s

�
q

��� � 
����C � ��������
s � �s�d�� � ����

s

i

�
h
���� ��	���TZ

i
��

� (10b)

where C � ��s � �d�����s � �d��.
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Figure 9. Rising friction-force peaks resulting from bow accel-
eration in combination with a small �. Bow acceleration may
create static friction force peaks with an envelope rising after the
initial period. The peak at pointD is higher than the one at point
A. Equations (6) and (8b) are hence inadequate for predicting
a maximum bow speed in this case. Short-dash lines: “potential
friction force” (�BRG � �NUT � �; friction characteristics:
“hyperbolic”).

In addition to the obstacles at time points A through
C, there is, however, a fourth phenomenon that poten-
tially limits our range of acceptable acceleration: For small
�, the envelope of the static-friction force peaks may be
growing after the initial period–from the first restriction
point,A, to an apex a few periods later (see Figure 9, and
Appendix A5). (As we could notice in Figures 4 and 5:
with a constant bow speed the static friction-force maxima
were diminishing from period to period during the ���
initial periods.)

With �d held constant, the highest force peak will typi-
cally be found in the static-friction interval of period num-
ber ������. It is therefore feasible to estimate a second
acceleration limit with respect to that point,D (defined as
td � trel�T ����������), in order to avoid a premature
slip here. The requirement at time pointD thus becomes:

fST �trel � T ��� ��������

� fSL�trel � T �������� � � ��� �d� � FZ�s� (11)

which solved for a gives an equation that in its full form
reads

a � ������ ��FZ

h
�	� �����s � �	� 
� � �����d

� 	
q
�	� � ����

�
�	� 	����

s � �	� 
� � �����s�d
�i

�

h
��� 

� � ��
�� � ��	�� � ���� � 	���TZ

i
��

�(12)

The left-hand side of equation (11) represents “static fric-
tion force”.

6. Verification of accuracy of the equations

Simulations were used to verify the accuracy of the above
equations with concern to the simple bowed-string model.
In a parameter space of bow acceleration: 50 to 900 cm/s�

Figure 10. Comparison between simulated attacks and the four
limiting equations (number of nominal periods elapsing before
regular periodic triggering). Panels to the left are describing sim-
ulation sets of different �. White colour is indicating regular trig-
gering from the very beginning (“perfect attacks”). In the panels
to the right, limits set by equations (8b), (10b), and (12)–referring
to the time points A through D–are marked A, B, C, and D, re-
spectively: In order to achieve “perfect attacks”, the bow accel-
eration should be kept lower than both A and D, and higher than
B and C. Notice that for small �, B and D give the strongest
requirements, while for large � the situation is reversed, i.e., C
and A giving the most narrow limits. Exactly at which � these
exchanges take place depends on the �d��s ratio.

(abscissa), and bow force: 0 to 1000 mN (ordinate), more
than 15000 simulations were performed per plot (other pa-
rameters: T � ���ms; ZTRV � ��		 kg/s; � � �; friction
characteristics: hyperbolic with �s � ���; �d���cm/s� �
���; �d�asymptotic� � ���). Each simulation, which
lasted twelve nominal periods after the first slip, was cate-
gorised and given a grey-tone pixel according to the num-
ber of nominal periods elapsing before periodic trigger-
ing occurred. The resulting plots are found in the left-hand
panels of Figure 10. These plots show the responses at six
different �, all of which had integer ratios, and thus quali-
fying for the use of the equation set.

In the right-hand panels of Figure 10, predictions of the
equations are plotted. The functions are labelled A through
D in accordance with time points they refer to: A = equa-
tion (8b), right side; B = equation (8b), left side; C =
equation (10b), and D = equation (12). To avoid “subjec-
tive selection” of friction coefficients, to which the equa-
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Figure 11. String-parameter overview. String I has moderate
stiffness and the lowest Q-values. String II has the same mod-
erate stiffness combined with higher Q-values. String III has
very high stiffness combined with the higher Q-values. The
spectral envelopes of the reflection functions of strings II and
III are identical, the difference in their Q-values are all due
to differences in their inharmonicity, i.e., in their partial fre-
quencies. The inharmonicity is given in cents defined by C �
���� log�Fn�nF��� log �, where Fn is the frequency of the nth
partial.

tions are highly sensitive, the following procedure was
used: For each parameter space, three simulations were
performed (with FZ values of 0.25, 0.5 and 1.0 N, respec-
tively), whereafter the friction coefficients of the simula-
tions were derived from the appropriate phases of the at-
tacks by the computer, and inter/extrapolated for the cho-
sen range of FZ .

In general, Figure 10 shows simulations and predictions
in good correlation–particularly where the frictional char-
acteristics are not extrapolated. The white triangles (“per-
fect attacks”) do not extend all the way down to the ori-
gin as one might have expected from inspecting the equa-
tions. The reason for this lies in the choice of a hyperbolic
friction characteristic: The friction-coefficient delta (i.e.,
�s��d�t

�

rel
�)–determined by the friction curve’s intersec-

tions with the string’s load line–decreases as FZ decreases,
and vanishes when FZ � ��mN. The hyperbolic curve it-
self, which is uniquely defined through three coordinates,
is of the form � � c� � c���vrelative � c��, where c�–c�
are constants.

7. The problem of including torsion in the
equations

Since the transverse system described by equation
(3) closely resembles that of a spring with stiffness
�ZTRV ����� � ��T �, the torsional system might with
the same precision and limitations be described as

�ZTOR����� � ���T �, where ZTRV and ZTOR are the
transverse and torsional wave resistances, respectively,
and � is the ratio between transverse and torsional prop-
agation speeds. The “parallel reactance” of these two sys-
tems can thus be expressed as

�TZ �

���� ��T
� where Z � �

TTORZTRV

TTOR � �ZTRV

� (13)

In principle, equation (3) may hence be adjusted for tor-
sional admittance–and torsional waves returning to the
bow–by replacing its wave-impedance term Z with the
modified Z �. (Notice: Z � is not the familiar “parallel
impedance”, ZTRV ZTOR��ZTRV � ZTOR�, which re-
mains valid as half the impulse impedance of the string
surface).

However, while inserting Z � in equation (3) gives a fair
estimate of the force build-up before the first string release,
the “ringing” caused by torsional waves as response to a
slip during the transient makes equations (6) through (12)
quite unsuitable as predictors of the acoustical outcome.
This ringing, which is caused by mutual transformations
between transverse and torsional pulses, is described in
Figures 2 through 6 of reference [11], and the related text.
Such ringing varies with the torsional Q-values, as well
as with different combinations of � and �, the analysis of
which will have to wait for another study.

8. Simulations with more complex models

Although the equations discussed are unsuitable for pre-
dicting the acoustical outcome of more complex sys-
tems, the patterns they outline for simpler systems can
still to some extent be recognised in the more advanced
ones, as shall be shown. Simulations were performed for
three complex bowed-string models. In all cases the string
impedances were: ZTRV � 	�
�	kg/s and ZTOR �
	���kg/s (comparable to a “heavy” steel violin G-string
[12]), cTOR�cTRV � ��� � �, and bow admittance
� 	�	� s/kg above 100 Hz (derived from [13]). “Plastic”
friction characteristic was used (see Appendix A4 and [7].
The example trajectory shown in Figure 11 is result of
a steady-state Helmholtz motion at � � ���, vbow �
�	 cm/s, and FZ � 	��N, simulated with String II). Two
different string-stiffness parameters were combined with
two different reflection-functions’ spectra in order to char-
acterise three different string qualities (labelled String I–
III). String stiffness was obtained by use of the Airy func-
tion, as suggested by Woodhouse in [4]. Figure 11 show
the simulation parameters in terms of impedances, inhar-
monicity and Q-values, while the results of the respective
simulations are shown in Figure 12.

In the plots of Figure 12, the picture is noticeably
more complicated than for the simulations with the sim-
ple model of Figure 10. Nonetheless, a certain underlying
structure seems to shine through and is most clearly seen
for String I.
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Figure 12. Number of nominal periods elapsing before regular
periodic triggering occurs for three different bowed-string sys-
tems. Triangular patterns can still be recognised–particularly for
String I and II, although not with the same consistency as in Fig-
ure 10. While the abscissas are identical in Figures 10 and 12, the
ordinate has been increased by 50% in Figure 12 to compensate
for differences in the friction characteristics, etc.

The choice of damping parameters has not yet been dis-
cussed. Woodhouse and Loach [14] tested the average tor-
sional Q-value of a steel cello D-string to be 34, while
nylon and gut strings measured 46 and 20, respectively.
For transverse modes, an average Q-value of 500 has been
utilised by some authors [15]. There is, however, a good
reason for lowering these values somewhat when exam-
ining attack responses, as done in this paper. The reported
values originate from measurements on open (un-fingered)
strings. Every string player knows that bowed attacks are
much harder to perform on open strings than on fingered
ones. For this reason bass and cello players often pluck
open strings lightly with their left hand during bowed at-
tacks. In any string instrument a fingered string decays
much more rapidly than an open one. One may hence pre-
sume that the fingered string exhibits significantly lower
Q-values, and that this represents the normal situation for
the string player.

As stressed on several occasions already, the present
analysis is entirely based on integer-ratio positions of the
bow. The reason for this lies not solely in the computa-
tional simplicity. In general, a set of non-integer-ratio �
would fail to produce “favourable” force-acceleration tri-
angles with the same consistency as the integer-ratio ones–
at least when the system is loss-free. However, when the
Q-values are lowered to (presumably) reasonable levels,
the structure of these triangular areas can easily be recog-
nised. Figure 13 shows examples with the same system as
used for String I of Figures 11 and 12.

In Figure 14, the parameters of Strings I–III are used
once more, this time with bow strokes of constant veloc-

Figure 13. Number of nominal periods elapsing before regular
periodic triggering occurs for String I bowed in a non-integer-
ratio position. When lowering the Q-values and utilising the plas-
tic friction model, attacks “bowed” in non-integer-ratio positions
produce plots quite similar to the ones produced with the bow
in integer-ratio positions (compare to Figure 12). The system pa-
rameters are all equal to those given for String I of Figures 11
and 12.

ity and force. To add realism, the bow was allowed half
a nominal period for acceleration. One striking difference
between the plots of Figures 12 and 14 is that in the latter
very few “perfect” attacks were produced for � � ���.
With these larger � values the periodic triggering usually
failed (cancelled by the nut-reflected initial slip pulse) at
time pointC–not surprisingly. It should, however, be men-
tioned that when string torsion is included, reflections at
the bow introduce additional losses, which to some extend
reduces the cancelling potential of this pulse.

Figures 15 and 16 shows examples of “perfect” attacks
for two different systems: Figure 15 displays the onset
leading to the steady-state Helmholtz motion of Figure 1,
while Figure 16 gives the corresponding onset for the
more complex model of String II. In both simulations �
is equal to 1/6. Notice the build-up of waves returning to
the bow on the nut side in each case. The basic features are
quite similar. Notice also how the flyback velocity in both
cases appears reduced at slip number 6, i.e. at time point
C, where interference with the remains of the initial slip
pulse–��� times reflected on the nut side of the bow–takes
place.

One may conclude from comparing Figures 15 and 16
that the major structure of wave buildup in the string’s
transverse plane is not extremely sensitive to torsion,
string stiffness, or differences in friction characteristics
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Figure 14. Number of periods elapsing before regular trigger-
ing occurs when starting the bow with constant speed and force.
Losses are adequate for making “perfect” attacks as long as
� � ���.

during the creation of Helmholtz motion–at least when the
string is bowed in an integer-ratio position.

Schelleng suggested a slightly raised bow force at the
beginning of a note or rapid crescendo in order to provide
the energy to be stored in the string. From the simulation
of Figure 16 it is possible to derive that in order to main-
tain the periodic triggering with the bow-velocity parame-
ters programmed, the limiting static frictional force should
decrease no more than ca 0.3% per period during the first
seven nominal periods, and thereafter no more than 0.9%
per period for the following 8. The post-attack reduction
of bow force must thus be performed with some care, even
after the final bow velocity has been reached.

9. Conclusions

Some characteristic features of bowed-string onsets lead-
ing to the Helmholtz motion have been presented. In the
(post transient) Helmholtz motion, using the analysis of
d’Alembert’s solution to the wave equation, waves travel-
ling toward the bow from each side can be seen to form
nearly symmetrical patterns during the stick interval. Ar-
riving from the bridge side, adjacent pulses form steps
increasingly opposing the movement of the bow. Simul-
taneously arriving from the nut side, steps go more and
more in the bow’s direction. During slip, waves from both
bridge and nut have their maxima in terms of opposi-
tion to the bow velocity, which is the reason why the re-
lease normally takes place. The creation of this pattern
requires a history of a number of slip pulses stacking up
with increasing magnitudes on the nut side during the tran-
sient. Apparently, this would only be the case when the
bow is given some initial acceleration, and/or: if losses of
the system provide sufficient magnitude reduction in slip

Figure 15. Build-up to Helmholtz motion with simple bow-
string models. Top panel: Friction force during a bowed transient
with regularly spaced slip pulses. Dotted lines: “potential fric-
tion force”. Upper middle panel: Waves (including “echoes” of
successive slip pulses) returning to the bow after reflections at
the nut and bridge, respectively. Notice how the reflections from
the nut stack up in a periodic pattern with pulses of increasing
heights. Lower middle panel: Because there is no torsion, the
string is following the bow perfectly during stick. Bottom panel:
The “hyperbolic” friction model is quite simple.

pulses several times reflected between the bow and the nut.
Hence, for the player, bow acceleration is a most important
means for reaching the wanted combination of bow force
and string amplitude without introducing undesirable on-
set noise.

Most of the analyses of this paper were done with
bowed-string models of the simplest kind, i.e., loss-free
systems, or systems with small losses concentrated at the
string terminations. In order to acquire intelligible equa-
tions, an unsophisticated friction model was used, derived
from a hyperbolic friction-coefficient curve descending
with increasing relative bow-string surface velocity. Based
on this set-up, four equations were suggested, which– con-
sidering a flexible string with fairly rigid terminations, ex-
cited by a bow of infinite impedance in an integer-ratio
position–give the approximate range for bow acceleration
(or speed) capable of producing a slip-stick triggering pat-
tern with intervals equal to the fundamental period of the
string over a number of initial periods. Although the equa-
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Figure 16. Build-up to Helmholtz motion with advanced bow-
string models. A “perfect” attack transient simulated with more
advanced string and friction models (equal to those used for
String II of Figures 7, 12, 13, and 14). Even when bow com-
pliance and string torsion are included, the transverse wave pat-
tern does not differ substantially from that shown in Figure 15,
simulated with the simpler models. The bottom panel shows the
(plastic) friction force trajectories of the present simulation.

tions themselves are not directly transferable to more re-
alistic systems, the pattern they describe seems to pro-
vide some insight in the conditions for development of the
Helmholtz motion, even in more complex models.

Coda A string player can control the bow’s acceleration
not only by the arm movement, but also by the firmness
of the bow hold and wrist. Many players have found this
to be particularly effective when attacking the string close
to the bridge, where the bow’s acceleration should be kept
smooth in the first part of the transient in order to avoid
noise of extra slips, caused by a rapidly changing frictional
resistance.

Appendix

A1. D’Alembert’s wave equation

D’Alembert’s solution to the wave equation reads

y�x� t� � y��x� ct� � y
�

�x� ct�� (A1)

where the signs indexing y denotes the direction of wave
propagation, and c its speed. Furthermore,

�y

�x
� y�� � y�

�
�

�
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�t
� �y�� � y�
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� (A2)
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A2. “Potential frictional force”

The frictional force between a noncompliant bow and the
string during the static intervals may be expressed through
the following equation, which can be derived from [16],
equations (B13) and (B14):

FST � �ZCMB

�
vb�t��

�X
i��

vi�t�

�
� (A4)

where ZCMB is the combined wave impedance of
the string, i.e. for a string with rotational freedom
ZTRV ZTOR��ZTRV �ZTOR�, otherwise ZTRV ; vb�t� is
the velocity of the bow, vi�t� denotes the partial wave (i.e.
�yi��t) arriving at the bow. v��t� and v��t� are transverse
signals propagating away from the nut and the bridge, re-
spectively, v��t� and v��t� are torsional signals propagat-
ing away from the nut and the bridge.

The sum of the four partial signals (i.e., velocities) gives
the surface velocity the string would have taken at the
point of bowing without friction. It is convenient to re-
fer to FST �t� as “potential frictional force” regardless of
whether the friction be static or not.

A3. System impulse response–Development
of equation (3)

Let us consider a system where the impulse response of
a flexible string with one reflecting termination (at x �
�), excited in a point (x � �L), is expressed through a
causal Green’s function g�t�, comparable to the method
employed in [17] and [3]. The string velocity at �L is:

v�t� �

Z
�

�

g���f�t� �� d�� (A5)

where g�t� is the Green’s function of the system, and f�t�
is the friction force at the point of excitation.
g�t� comprises here a Dirac delta and a reflection func-

tion, h�, that includes a delay equal to the time required
for a wave to propagate from the bow to the bridge and
back:

g�t� �
��t� � h�

�Z
� (A6)

where

h� �
Z �R

Z �R
��t� t��� (A7)
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and Z � m�c is the transverse wave resistance, R the re-
sistance of the bridge, m� is the mass of the string per unit
length, c is the wave propagation speed, and t� � ��L�c.

If Z � R, h� may be approximated as h� � ���t�t��,
in which case we get

g�t� �
��t�� ��t� t��

�Z
� (A8)

and

v�t� �
�

�Z

Z
�

�

�
��������� t��

�
f�t��� d��(A9)

We are interested in knowing what the force function must
be in order to maintain a constant string and bow velocity
v�, starting at t � �. Using the Laplace transform, we get

V �s� �
v�
s
� G�s� �

�� e�t�s

�Z
�

F �s� �
V �s�

G�s�
� �Zv�

�

s��� e�t�s�

� Zv�
� � coth�t�s���

s
� (A10)

When returned to the time domain, equation (A10) gives
the force function we know from earlier, which builds up
in steps of magnitude �Zv�, at time intervals of t�:

f�t� � �Zv�

kX
n��

��t� nt��� (A11)

where k � Floor�t�t��, Floor(val.) is the largest integer
� val., and ��t� the unit step.

For our transient analyses, however, we need a smooth
function to describe f�t� during “stick”, so we choose

�f�t� � v�

�
�Z �

�Zt

t�

�
� v�

�
�Z �

�Zt

��L�c

�
� (A12)

which outlines the magnitude maxima of equation (A11),
i.e., it gives the correct value each time t�T� is an integer.
The fraction inside the square bracket expresses a virtual
stiffness. By repeating the procedure described by equa-
tions (A5) through (A11) for the other string termination
with a reflection function, hL � ���t�������L�c	, and
combining the two in a single expression, we get

�f�t� � v�

�
�Z �

�Zt

��L�c
�

�Zt

���� ��L�c

�
� (A13)

which, by replacing �L�c with T (i.e. the fundamental pe-
riod) gives

�f�t� � v�

�
�Z �

�Zt

���� ��T

�
� (A14)

Once more the fraction inside the square bracket can (for
our purposes) be thought of as an expression of stiffness–
this as partial impedance of a string with two fixed ends,
dynamically excited a point �L somewhere between the
two.

In a system starting from rest with an acceleration, a, at
t � �, the first term inside the square brackets of equations
(A12) through (A14) is omitted since vbow��� � �, and
the friction force consequently zero. That leaves us with
an expression for “virtual dynamic impedance”, quite sim-
ple, linear, and suitable for estimating static friction-force
build-up under an accelerating bow of infinite impedance:

Z �
�Z

���� ��T
� (A15)

which gives

�f�t� � Z
at�

�
�

Zat�

���� ��T
� (A16)

For comparison, the correct force function is

f�t� � at � �Z

�
��t� �

kX
n��

��t� nt�� (A17)

�

jX
m��

��t�mt��

�
�

where k � Floor�t�t��, j � Floor�t�t��, and the asterisk
denotes convolution.

The discrepancy between equations (A16) and (A17) is
small for small �, and diminishes as t increases. For � �
��
 the maximum error is less than 0.31% when t � �T ,
and less than 0.15% when t � 
T , which is more than
sufficient for our purpose. Whenever t�T� and t�T �����
are both integers, equation (A16) gives the value without
error.

Notice also that the term at in equation (A17) might
have been replaced by any arbitrary velocity function v�t�:

f�t� � v�t� � �Z

�
��t� �

kX
n��

��t� nt�� (A18)

�

jX
m��

��t�mt��

�
�

A4. On the potential string-release cancel-
lation at C

Figure A1 illustrates the problem of determining the value
���� of equation (9). Depending on the nature of the re-
flection function(s), the initial-slip pulse arriving from the
nut at the time tc � trel � T ���� � �� might take dif-
ferent shapes. With ��� being an integer, it is the front
of the (��� times reflected) pulse that has the potential of
cancelling the string release at this instant. For a reflection
function where the ratio between frequency and logarith-
mic decrement is constant (as for constant-Q systems) the
situation appears as in Figure A1, provided no phase shift
takes place.

While the damped pulse has its maximum at its middle,
its front does not nearly reach this magnitude (As a thumb
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Figure A1. Example of square pulse after frequency-dependent
loss. When passing a constant-Q filter, a rectangular pulse is
“smeared” out. The actual Q-values of the filter used for this fig-
ure was 30 for all frequencies while the phase response was zero.
The abscissa gives time relative to the fundamental period.

Figure A2. Maximum acceptable acceleration at D compared to
ditto at A. Which one of the two being the more restrictive de-
pends primarily on �, but also to some extend on the ratio �d��s.
In most practical cases where the equation at D sets the most
conservative limits, the limiting force peak is found in the period
number � ������ after the first release, giving i� � ����.

rule–giving an error less than 0.5%–the normalised pulse-
height decrement is approximately equal to ����Q�� for
� � ���� in combination with constant Q-values � ���).
The cancelling potential of a damped pulse with respect
to a “fresh” one of opposite orientation depends on the
importance of the “spikes” remaining at both ends. In the
case of the plastic friction model, a certain time is needed
for the temperature build-up necessary for a string release
of significant flyback velocity.

The friction coefficient of the plastic model follows the
equation [7]

� �
Aky�Temp�

N
sgn�v�� (A19)

where A represents the contact area, N the normal force,
ky�Temp� the shear yield stress (function of temperature),
Temp is the temperature and v the relative velocity (bow
hair – string surface).

The temperature rises as function of frictional energy
and decays due to natural heat flow to the environment.
In practice, A seems to be growing with N , nearly pro-
portionally. Only limited information has yet emerged on
the characteristics of ky [7, 18]. For the simulations in the
present study the following friction function was used: The
friction coefficient � as function of lasting relative speed
approaches a hyperbolic curve at a rate determined by a
heat-flow half time of 40�s. The long-term curve (which
is uniquely defined by three coordinates, see section 6) has
the following characteristic points at ��vrel� t�: ������ �
�����; ���� cm/s��� � ���	�; ������ � �����.

A5. On the restrictions at A and D

With an accelerating bow, the friction force shows distinct
apexes at each sticking interval during the first part of the
transient (see Figure 9). These occur at time points iT ���
�� after the first release, starting with A at i � �, where
i is indexing the nominal periods after trel. Considering
these force maxima individually, the maximum acceptable
bow acceleration of period number i is the solution to

fST 
trel � iT ��� ���

� fSL
trel � T �i� � � ��� �d� � FZ�s� (A20)

which, with respect to acceleration, gives

amax�i� �
FZ�s
TZ

�
���� �� (A21)

�

h
�� � � �i� ��i�

�d
�s

��� � � �i� �i�

� �

r
��� � � �i�

�
�i� ��i�

�d
�s

��� � � �i� �i�
��

�
��� � � �i���� � � �i� �i��

�
��

�

We see that equation (6) is only a particular case of equa-
tion (A20), in which i � �.

Figure A2 gives the ratio amax�i��amax���, that is,
amax�i� divided by the right side of equation (8b), or,
amax�i� normalised to the acceleration limit caused by the
force apex at A. The lowest acceptable maximum accel-
eration depends not only on i, however, but also on � and
the fraction �d��s. Figure A2 shows how this restriction
varies as function (here shown continuous) of the product
i�, for a ratio �d��s � ���. It is seen that for � � ��,
the apex at A is the most restricting feature. For smaller
�, an apex near t � trel � 
�������T ��� �� is the most
restricting one (i.e., when i � ������, or i� � ����).
For practical reasons equations (11) and (12) were hence
chosen with the fixed value i � ������, although the true
function varies slightly with both � and the �d��s ratio.
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