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Experienced bow makers empirically know the influence of wood, tapering, and camber on the

playing and tonal qualities of a bow. However, the way each parameter affects the bow mechanical

behavior is not clearly established. An in-plane finite element model is developed to highlight the

link between the adjustable design parameters and the mechanical behavior of a bow. This model

takes into account geometric nonlinearity as well as compliance of the hair. Its validity is discussed

from measurements on a bow. Results from simulations are compared to experimental results

from previous studies. The consequences of adjusting hair tension and camber are then investigated.
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PACS number(s): 43.75.De [NHF] Pages: 773–782

I. INTRODUCTION

In spite of an extensive scientific literature about the

violin,1,2 few studies are exclusively devoted to the bow.

However, experienced players attach almost as much impor-

tance to the choice of a bow as to the choice of a violin.

They generally asses the quality of a bow in terms of playing

and tonal qualities. Playing qualities refer to the control of

bow in playing, tonal qualities to the influence on the tone.

The question of a link between physical properties and qual-

ity of bows was addressed by several authors.3–10 Static

properties such as total mass, mass distribution, and bending

stiffness have generally been assumed to affect the playing

qualities, while dynamic properties such as hair and stick

modes would relate to the tonal qualities.5,6,11 In most stud-

ies, some static and dynamic properties were measured on

different bows with various degrees of quality. Despite the

seeming simplicity of the bow compared to the violin, these

studies showed that it is not yet possible to predict the qual-

ity of a bow by measuring a set of physical properties. How-

ever, some authors pointed out the plausible existence of an

acceptable range for certain characteristics, out of which the

bow would be considered as not suitable for playing.4,6

When manufacturing a bow stick, the bow maker works

with three main parameters: wood, tapering, and camber.12

Regarding wood, high quality modern bows are made of per-

nambuco (Caesalpinia Echinata), a Brazilian wood with

high specific Young’s modulus and low damping. However,

this species has become rare and expensive. Tapering

denotes the gradually decreasing thickness along the stick.

In general, the maker adjusts the taper of the bow to reach

the desired total mass for a given wood density. Camber is

the concave curvature of the stick without hair tension. It is

adjusted by heating a short portion of the stick over a flame

and bending it until it cools down. Once a bow is finished,

the only possible adjustment by the player is the hair

tension.

This paper aims at highlighting the link between the ad-

justable design parameters and the mechanical behavior of a

bow. Emphasis is put on camber and hair tension because

both can be adjusted on a finished bow. For this purpose, an

in-plane finite element model is developed and validated

from measurements on bow. It is then used to investigate the

effects of hair tension and camber on the mechanical behav-

ior of a standard bow.

II. MODEL OF THE ASSEMBLED BOW

In previous work, various ways of modeling a bow have

been proposed. Wegst and Ashby13 made simple calculation

from beam theory, considering a stick with a circular cross

section of constant radius, to determine a typical range of

Young’s modulus required for violin bows. Pitteroff14 pro-

posed an analytical model aimed at describing the static

behavior of the assembled bow, i.e., stick and hair, in the

perpendicular plane. Despite rather rough approximations,

the model agreed well with experimentally observed behav-

ior for moderate bow forces. In his model, the stick was rep-

resented by its stiffness at the end, which can be written

analytically in the case of a simplified geometry. To take

into account a more realistic geometry, other authors

employed numerical models. Carlsson and Tinnsten15 used a

finite element model coupled to an optimization algorithm to

calculate the change in diameter along the stick needed to

recover some of the static and dynamic properties after

changing density and Young’s modulus. The properties of

the tightened bow were not investigated in this study.

Caussé et al.7 made simulations based on the finite ele-

ment model of an assembled bow to highlight mode shapes
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of stick and hair and to evaluate the influence of hair tension

on corresponding eigenfrequencies. In their study, the stress

field due to hair tension was taken into account to determine

the eigenmodes. This was done in a similar way as Mamou-

Mani et al.16 studied the effect of downbearing on piano

soundboard eigenfrequencies, but the geometrically nonlin-

ear nature of the problem was not discussed in the case of

the bow.

However, the change in geometry during the loading of

the bow, e.g., when tightening the hair, is strong enough to

cause geometric nonlinearity, even under hypothesis of small

deformation and linear behavior of the material, as pointed

out by Dauchez et al.8 In the present paper, a finite-element

model of the bow including the hair and taking into account

geometric nonlinearity is now developed. As a starting point,

only the in-plane static behavior of the bow is considered.

A. General description

The bow as we know it today is the result of a progres-

sive evolution through centuries.17,18 Renaissance bows had

a short thick stick with convex curvature. As the musical

style changed, the stick got longer and thinner, while its cur-

vature was progressively changed from convex to concave to

withstand the hair tension without increasing the mass too

much. At the beginning of the 19th century, the French bow

maker François-Xavier Tourte brought the last significant

improvements to the design of bows. Today he is considered

the father of the modern bow.

A modern violin bow is represented in Fig. 1. The stick

is traditionally made of wood. Its main function is to support

a 65 cm hair ribbon under tension. The hair is attached to the

head of the stick at one end and to the frog at the other. The

hair enters the head through a thin plate, traditionally made

of ivory, which covers the underside of the head. The posi-

tion of the frog is adjusted by turning the button, which oper-

ates on a screw mechanism located inside the stick. This

allows the player to tighten the hair to suitable tension for

playing. The right tension is essentially determined by the

transverse compliance of the hair. If too loose, the hair tends

to touch the stick in playing. If too tight, more effort is

needed to make the string vibrate, according to players and

bow makers.19,20 On early bows, the frog was simply

wedged between stick and hair. The resulting hair tension

was determined by the height of the frog and the length of

the loose hair, both fixed by the bow maker.

The model presented in this paper allows one to simu-

late, first, the tightening of the bow from its initial state with-

out hair tension [Fig. 2(a)] to its playing state at hair tension

T0 [Fig. 2(b)]; then, the loading by a normal force F. At this

step, the hair tension T may differ from the initial hair ten-

sion T0 [Fig. 2(c)]. Throughout the simulation, the stick is

clamped at the frog end (x ¼ 0 mm) and free at the other

end.

The model just described is a simplified representation

of actual playing conditions. In reality, the bow is held in a

finger grip that allows the pivoting around an axis located

somewhere near the cut up in the frog, at the position of the

thumb. The normal force at the contact point between the

hair and the string is controlled by applying a moment with

the index finger on top of the stick, with the thumb acting as

a support. Because the combined action of index and thumb

fingers takes place near the frog, on a thick part of the stick,

it is assumed that this modeling makes little difference with

the actual static behavior of the bow in playing.

The model takes into account the geometric nonlinearity

of the bow as well as the compliance of the hair. It is based

on a finite element formulation coupled with an iterative

procedure.

B. Finite element model of the bow

To take into account the geometric nonlinearity, the

model is based on the corotational formulation for beams

given by Crisfield.21 The corotational formulation allows the

global displacements and rotations of a structure to be arbi-

trarily large, although the local strain are assumed to remain

small (Fig. 3). A local reference frame is attached to each

element and continuously rotates and translates with it. With

respect to this local frame, a small-strain, small-displace-

ment relationship is applied. Because a bow stick is slender,

this relationship can be derived from the Euler-Bernoulli

beam theory.

For each beam element, the axial force N is related to

the local axial displacement ul by the relation

N ¼ E A
ul

l0
; (1)

where E is the element Young’s modulus, A the element

area, and l0 the element initial length. The internal bending

moments �M1 and �M2 are related to the local nodal rotations

hl1 and hl2 by the relation

�M1

�M2

� �
¼ E I

l0

4 2

2 4

� �
hl1

hl2

� �
; (2)

where I is the element second moment of inertia.

The original formulation developed by Crisfield leads to

the following relationship between variation of global inter-

nal forces dqi and variation of global displacement dp,

dqi ¼ ðKt1 þKtrÞdp; (3)

where Kt1 is the standard tangent stiffness matrix, Ktr the

geometric stiffness matrix. Kt1 and Ktr are displacement-

dependent matrices.

To allow a sufficiently fine representation of tapering,

the bow stick is discretized into 20 beam elements. The head

is represented by a single element with diameter 10 mm, so

as to make it sufficiently stiff. After assembling, the problem

to solve takes the form:

KðuÞu ¼ fðuÞ; (4)

where u is the displacement vector, KðuÞ the assembled

stiffness matrix, and fðuÞ the external force vector. The only

external force in fðuÞ is the force T exerted by the hair on

the stick at the tip [see Fig. 2(c)], which varies in orientation
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and amplitude in function of the displacement of the tip. The

variation in orientation is due to the rotation of the hair coor-

dinate system. The variation in amplitude is due to the

increase in hair tension DT ¼ T � T0 as the tip moves away

from its position at T0. Because KðuÞ and fðuÞ are

displacement-dependent, an iterative procedure is necessary

to solve Eq. (4). Moreover, an additional stiffness term for

the last element, i.e., the head, has to be introduced to take

into account the variation in force orientation and amplitude

between two successive configurations. The additional stiff-

ness term is expressed in a similar way as when follower

forces are involved.22

For the general case where the solution of the tightened

and loaded bow is sought, the numerical procedure achieves

good convergence when decomposing the computation into

two global load steps:

(1) tightening of the bow, i.e., Tx ¼ T0 and Ty ¼ 0,

(2) loading of the hair, i.e., Tx ¼ T0 þ DTx and Ty 6¼ 0,

where Tx and Ty denote the components of T. For both steps,

the Newton–Raphson algorithm with several load increments

is applied to reach the equilibrium.

Regarding the first step, a backward displacement of the

frog relative to the stick (typically 3–3.5 mm) is normally

needed to tighten a bow. This displacement counterbalances

the stretching of the hair (1 mm) and the decreasing distance

between the frog and the tip (2–2.5 mm) due to straightening

of the stick and rotation of the head, as reported by Pitter-

off.14 In the model, neither the stretching of the hair at this

step nor the displacement of the frog is considered. There-

fore, the distance between the frog and the tip decreases

when tightening the modeled bow, whereas it slightly

increases on an actual bow because of the elongation of the

hair. Although the increase in bow length is not fully negligi-

ble, it does not affect the overall behavior examined in the

second step. Once the bow is tightened, the distance between

frog and tip defines the hair length L0 corresponding to ten-

sion T0. To compute the value of Tx and Ty to apply in the

second load step, a model of the hair is now defined.

C. Model of the hair

The ribbon of hair is assumed to behave like an equiva-

lent single hair, represented in Fig. 4. When an external force

F is applied at relative abscissa c (0 < c < 1), the hair on ei-

ther side is assumed to extend proportionally to the increase

in tension DT ¼ T � T0, where T is supposed to be the same

on either side, i.e., T ¼ jjTjj ¼ jjT0jj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

x þ T2
y

q
. This

implies that the force F has a small tangential component Fx

of unknown value (except for c ¼ 0:5 where it is null).

It has to be noted that the distribution of forces in the x
and y directions, respectively, is slightly different under nor-

mal playing conditions. In this situation, the tangential com-

ponent of F corresponds to the friction force, i.e., Fx ¼ lFy,

where the coefficient of friction l varies within each cycle of

Helmholtz motion.23,24 As the force F is fully determined,

the tension may differ on either side of bowing point.

Cremer1 reported a value of 0.24 for the average coefficient

of friction. With a typical bow force of 1 N, the correspond-

ing average friction force is fairly small compared to hair

tension. Thus, the difference between jjTjj and jjT0jj is likely

to remain small, which gives support to the hypothesis made

here.

The lengths of both sides are:

L1 ¼ cL0 1þ ch DTð Þ
L2 ¼ 1� cð ÞL0 1þ ch DTð Þ; (5)

where ch is the compliance per unit length of the equivalent

single hair. Considering a ribbon of nh hairs having identical

and homogeneous Young’s modulus Eh and diameter dh, an

estimation of ch can be obtained from:

FIG. 1. Modern violin bow.

FIG. 2. Bow without tension (a), tightened (b), and loaded (c). FIG. 3. Initial and current configurations of a beam element.
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ch ¼
4

nh Eh p d2
h

: (6)

Typical values for a violin bow are nh ¼ 160�190, Eh ¼ 4�7

GPa, and dh ¼ 0:2 6 0:05 mm, as reported by Askenfelt.6 He

also measured the stiffness constant of a complete ribbon and

found it to reach 30 N.mm�1 under a nominal tension of 60 N.

With a length Lh ¼ 650 mm, the corresponding compliance

per unit length is ch ¼ 5:1� 10�5 N�1.

The hair deflection at the loading point is

dh ¼ L2

Ty

T
: (7)

The distance between frog and tip is

Lh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

1 � d2
h

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

2 � d2
h

q
: (8)

At this point, it can be shown that the normal component of

T at the tip is simply given by

Ty ¼ cFy: (9)

The tangential component cannot be expressed by a similar

equation. Therefore, it is found iteratively, starting from the

initial guess Tx ¼ T0. At each computation step of the

Newton–Raphson algorithm, the value of Lh is computed

from Eq. (8) and compared to the distance between frog and

tip in the current configuration. As long as the two values

differ, the value of Tx is corrected for the next iteration.

D. Validation of the model

In this section, the ability of the finite element model to

reproduce the deformed shape of an actual bow is examined.

A wooden student violin bow was tightened from zero to

high playing tension in steps of two turns of the button. At

each level, the shape of the stick was determined from a pic-

ture by means of image processing [Figs. 5(a) to 5(c)]. The

resolution in the measurement was about 0.3 mm. To keep

the imaging conditions as identical as possible for all pic-

tures, the position of both the bow and the camera were held

constant. The diameter along the stick was measured with a

digital caliper. The relative incertitude on the diameter was

less than 3%. The Young’s modulus was then determined

from two measurements of the dynamic response of the stick

simply supported at its ends and loaded by a mass at its cen-

ter (200 and 400 g) by means of the measuring platform

Lutherie Tools.25 A value of 36 GPa was found.

Then simulations were performed starting from the ini-

tial geometry. For each level of hair tension, the value of T0

giving the best least-squares fit between measured shape and

model output was determined. The maximum difference

between the experimental and numerical results on the y
coordinate of the neutral axis was less than 0.2 mm. It should

be noted that this procedure can be considered as an indirect

measurement of hair tension, provided that the Young’s

modulus is known. With the bow used in this experiment,

values of T0 ¼ 20:1, 39.2, 54.9, and 67.5 N (respectively, at

2, 4, 6, and 8 turns of the button) were obtained. The levels

of hair tension corresponding to four and eight turns of the

button were considered as the lower and upper limits for

playing, respectively. The optimal playing tension was found

at six turns (T0 ¼ 54:9 N). Although a typical value of 60 N

is commonly referred to as “normal” playing tension by

authors,14,26,27 the optimal value for each bow probably

FIG. 4. Model of the hair. Tightened hair (a), deflection under loading (b).

FIG. 5. Bow used for validating the model. (a) Initial measured shape. (b)

Successive shapes of the bow from zero tension to high playing tension by

steps of two turns of the button. The y coordinate indicates the distance from

the level of the bow hair to the neutral axis of the stick. (c) Final measured

shape. (d) Estimated hair tension T0 at each level vs minimum hair-stick

distance.
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depends on the stiffness of the stick and camber as well.

Figure 5(d) shows the nonlinear increase in minimum

hair-stick distance with hair tension.

III. RESULTS

In this section, we first describe the geometry of a

“standard bow” on which simulations are performed. Then

general results from simulations are presented and discussed

with respect to experimental observations by other authors.

Finally, the influence of initial hair tension and camber on

transverse bow compliance is examined.

A. Definition of a standard bow

The geometry of the modeled stick, which is basically

defined by camber and tapering, can be taken from measure-

ments on a representative modern violin bow. In this study,

however, we define the geometry of a “standard bow” from

criteria found in the literature. Similarly, the Young’s modu-

lus E is fixed at 25 GPa, which is a typical value for pernam-

buco.15,28,29 Measurements of a set of bows in professional

use today would be needed to check whether this “standard

bow” is representative of most bows available on the market.

1. Tapering

The tapered profile is derived from a formula given by

Vuillaume. This violin maker of the 19th century measured a

great number of Tourte bows and found the diameter to

decrease logarithmically along the stick.30 The correspond-

ing curve is considered as a reference in some studies.4,31

The original formula applies to abscissa between 110 and

700 mm from the stick origin and corresponds to a decrease

in diameter from 8.6 to 5.3 mm, the first 110 mm of the stick

having constant diameter of 8.6 mm. Because the origin of

the modeled bow is the front end of the frog, the formula is

adapted so that it applies to abscissa between 0 and 650 mm,

neglecting the small portion of constant diameter [Fig. 6(a)].

Thus, the diameter d at abscissa x is given by:

dðxÞ ¼ d0 1þ e ln
x1 � x

x1

� �� �
; (10)

where d0 ¼ 8:77 mm, x1 ¼ 825 mm, and e ¼ 0:255. Inter-

estingly, the second moment of inertia IðxÞ following from

Eq. (10) decreases almost linearly with abscissa for this set

of parameters. It can be approximated by

IðxÞ � I0

x� x0

x0

� �
; (11)

where I0 ¼ 293 mm4 and x0 ¼ 752 mm with 3% maximum

relative difference with that deduced from Eq. (10). Because

this observation has no obvious physical interpretation, one

may wonder whether this particular tapered profile is an opti-

mum empirically found by Tourte.

2. Camber

The concept of camber actually includes two aspects:

distribution of camber, which can be seen as shape of the

stick, and amount of camber, which represents how strong

the stick is bent.

The distribution of camber is here defined so that the

stick becomes straight under a certain tension, which is a cri-

terion commonly recognized by bow makers: “The match

between wood strength and camber can be tested by tighten-

ing the bow until the stick is straight (� � �). If the stick is

really straight, camber and wood strength are properly

matched (Grütter19)” and “One reference: the axis of the

stick should be perfectly parallel to the line of hair at maxi-

mum tension of the bow (Rolland20).” The maximum ten-

sion, i.e., the tension at which the stick is straight, is denoted

by Tmax
0 . In this configuration, the distance between hair and

neutral axis of the stick is constant [Fig. 6(b)], assuming that

the frog and the head have the same height h. Thus, the

bending moment resulting from hair tension has a constant

value Mmax
0 ¼ hTmax

0 along the stick. Therefore neglecting

axial compression of the stick as well as deformation of the

head, the initial curvature of the stick can be determined by

calculating the deformed shape of the initially straight stick

subject to momentMmax
0 at its free end [Fig. 6(c)].

Following this reasoning and considering the approxi-

mation of Eq. (11), a simple analytical expression giving the

initial shape of the stick yðxÞ can be provided by integrating

d2y=dx2 ¼ h Tmax
0 =E IðxÞ (with yð0Þ ¼ h and y0ð0Þ ¼ 0),

which yields

yðxÞ � h ¼ h Tmax
0 x2

0

E I0

ð�xþ ð1� �xÞ lnð1� �xÞÞ; (12)

where �x ¼ x=x0. The multiplying factor in Eq. (12), in terms

of E, I0, and Tmax
0 , is considered to be the amount of camber.

FIG. 6. Geometry of the standard bow. (a) Tapering, - - -. after Vuillaume;30

—, from Eq. (10). (b) Straight stick. (c) Cambered stick showing the case of

a “full camber.”
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The expression within the parentheses, dependent on �x, gives

the generic shape of the stick without hair tension (distribu-

tion of camber).

For a given bow, the maximum tension Tmax
0 is the input

parameter that determines the amount of camber of the mod-

eled stick. Although it corresponds to a physical quantity, a

more convenient way of quantifying the amount of camber

is the minimal distance between loosened hair and stick,

denoted by j. The smaller this distance, the more camber the

stick has. It is generally agreed among bow makers that this

distance should be between 0 and 2 mm and in any case not

negative. The case where j ¼ 0 mm is called “full camber.”

In this study, four different amounts of camber are investi-

gated. The value of Tmax
0 needed to obtain each chosen value

of j is determined by means of the finite element model. The

corresponding values of j and Tmax
0 are listed in Table I.

3. Comment on the relationship between tapering and
camber

In playing conditions, the bow is never tightened up to

complete straightening of the stick. Therefore the bending

moment resulting from hair tension is a function of abscissa

x, M0ðxÞ ¼ T0aðxÞ, where a denotes the distance between

hair and neutral axis of the stick. It is maximum at the tip

and at the frog (both head and frog have standard height on

modern bows) and minimum at the lowest point of the stick,

generally near the middle. Moreover, the stiffness of the

stick is determined by the quantity E I, where Young’s mod-

ulus E is supposed to be homogeneous along the stick, con-

trary to second moment of inertia I, which depends on

tapering. For a circular section, I ¼ pd4=64. Thus the stick is

far more compliant at the tip than at the frog. The local bend-

ing radius q that counteracts the initial curvature of the stick

is given by:

1

q
¼M0

EI
: (13)

From Eq. (13) it is clearly apparent that the stick will bend

more near the tip, where the bending moment is maximum

and the stiffness minimum. For this reason, camber is partic-

ularly strong in the last portion of the stick. More generally,

the role of distribution of camber is to compensate for the

decrease in diameter along the stick. In addition, the more

cambered the stick, the less it will straighten under the same

tension. Because tapering is mostly adjusted so that the stick

reaches a given mass, the bow maker has to adjust camber

accordingly to get the right shape on the tightened bow. A

physical model can be useful to determine the proper camber

for a given tapering, as pointed out by a recent study.32

B. Variation in hair tension under transverse loading

In previous studies on violin bows, the influence of hair

tension on different properties of the bow, e.g., bending stiff-

ness along the stick,6 stick mode frequencies,7 and bouncing

frequency,26 has been examined. In most studies, the hair

tension has been assumed not to vary significantly from the

initial value fixed by the player before playing. However, it

has been experimentally shown by Demoucron et al.27 that

the hair tension does vary when the bow is loaded by a nor-

mal force. The tension variation was found to be almost lin-

ear with respect to relative abscissa c and normal force Fy,

leading to a simple empirical relation,

T ¼ T0 þ aTcFy; (14)

where aT is an experimentally determined coefficient.

Figure 7 shows the simulated hair tension variation

when the bow is loaded by a normal force Fy of increasing

value at relative abscissa c. The tension increases almost lin-

early with relative abscissa and normal force, which is in

agreement with the observations of Demoucron. For a nor-

mal force of 1.5 N at the middle and 1.0 N at the tip, which

are moderate values in violin playing, the hair tension

increases by 20% and 25%, respectively. For a normal force

of 1.5 N at the tip, it increases by 40%. As a comparison,

Demoucron measured a variation of 25% for the same load

case. This discrepancy could be due to the higher stiffness of

the bow he used for the experiment (stiffness at the tip

Ks ¼ 91 N�m�1) compared to the modeled bow (Ks ¼ 72

N�m�1) because the increase in hair tension is essentially

due to the displacement of the tip under loading.

C. Distribution of transverse compliance along the
bow

When applying a normal force to the tightened bow

hair, the observed deflection at the loading point is the result

of two effects: deflection of the hair and bending of the stick.

The force transmitted by the hair to the tip makes the stick

bend. This results in a second displacement term in addition

to the hair deflection.

Pitteroff14 considered the two effects separately to give

an analytical relationship between force and deflection. The

contribution of the hair was the deflection dh of a string with

fixed length Lh and tension T0 under normal force Fy at rela-

tive abscissa c. The contribution of the stick was deduced

from the deflection ds of a cantilever beam under normal

force cFy at its free end. The stick was assumed to be straight

and have constant bending stiffness. However, the formula

remains valid when considering a more realistic geometry

simply by introducing the equivalent stiffness constant at the

tip Ks.
27 The total deflection at the loading point was

expressed as the sum of the two contributions:

TABLE I. Standard bow. Relationship between amount of camber, charac-

terized by minimum hair-stick distance j, and maximal tension Tmax
0 (ten-

sion for straight stick). Corresponding values of playing tension Tplay
0

(tension for 10 mm hair-stick distance) are given.

j (mm) Tmax
0 (N) Tplay

0 (N)

4.0 41.6 27.2

2.0 48.4 36.2

0.0 55.1 45.2

�2:0 61.8 54.1
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d ¼ dh þ ds ¼
cð1� cÞLh

T0

Fy þ
c2

Ks
Fy: (15)

When compared to experimental results, this relationship

matched well with the behavior of an actual bow in its low-

est two thirds. However, a significant difference between ex-

perimental and theoretical deflection was observed at the tip.

The model developed in the present article removes the

hypothesis that the effects of hair and stick are uncoupled.

Yet it is possible to estimate how hair and stick contribute to

the total deflection. The hair deflection is given by Eq. (7).

The total deflection is deduced from coordinates of the load-

ing point before and after the force is applied. The contribu-

tion of the stick is then given by the difference between total

deflection and hair deflection.

Figure 8 shows the simulated total deflection at the load-

ing point of the standard bow loaded by a 1 N normal force

plotted against relative abscissa of the force. Hair and stick

contributions are also plotted individually. The total deflec-

tion is null at the frog and maximum at the tip. The stick

deflection continuously increases along the bow, reaching a

maximum at the tip. On the contrary, the shape of the hair

contribution is similar to a parabola, although it is slightly

asymmetrical: the maximum value is reached just before the

midpoint of the bow. This asymmetry is due to the rise in

hair tension with relative abscissa.

As a comparison, it is possible to estimate the parame-

ters T0 and Ks used by Pitteroff by fitting the total deflection

with a second order polynomial of the same form as Eq. (15)

and identifying the coefficients. The third parameter, Lh, is

known from the finite element model. From this method, the

estimated value of hair tension is found to be 24% higher

than its actual value, T0 ¼ 45:0 N. The same operation was

done for three other values of Fy. The estimated values for

T0 and Ks, as well as the maximum relative difference in

deflection between numerical results and the second order

polynomial, are given in Table II. Regarding the hair ten-

sion, the deviation from actual value increases with force Fy.

Similarly, the estimated value of Ks varies significantly with

Fy. This shows that Eq. (15) does not reflect exactly the

behavior of the bow.

Moreover, Pitteroff observed that the transverse compli-

ance of the bow varies with the normal force. In the lower

half, the measured compliance was lower with a higher force

(5 N compared to 1 N). On the contrary, the compliance near

the tip increased with the force. The nonlinearity of trans-

verse compliance close to the tip was also reported by

Askenfelt.6 Figure 9 shows the simulated deflection of the

bow as a function of normal force at three different loading

points. The normal force Fy is limited to the range between 0

and 1.5 N. Although the bow force generally remains low

when playing near the tip, it may well reach values around

1.5 N in this part of the bow.33 A comparison with a linear

case, indicated by dotted lines in Fig. 9 can be made. As

seen, the simulated transverse compliance is nonlinear.

Close to the frog as well as in the middle, the compliance

tends to diminish as the force increases. This is due to the

increase in hair tension with force. Near the tip, the compli-

ance increases with the force.

D. Influence of initial hair tension on transverse
compliance

Before playing, the player adjusts the initial hair tension

by turning the button. As the tension increases, the stick

straightens progressively, which increases the minimum dis-

tance between hair and stick. The evolution of minimum

hair-stick distance with tension for four settings of camber

(4, 2, 0, and �2 mm) is plotted in Fig. 10. The increase in

hair-stick distance with tension is far from linear. This is due

to the fact that the straightening of the stick, which increases

the hair-stick distance, is the consequence of a bending

moment which itself depends on the hair-stick distance.

To evaluate the influence of initial hair tension on the

transverse compliance of the bow, simulations were per-

formed for four values of T0 on the standard bow with full

FIG. 7. Variation in simulated hair tension for three values of normal force

Fy (0.5, 1.0, and 1.5 N) applied at different places along the bow hair, shown

as function of (a) relative abscissa c and (b) force at the tip cFy. The simula-

tions are performed on the standard bow with full camber. The initial hair

tension T0 is fixed at 45.0 N, which corresponds to 10 mm hair-stick

distance.

FIG. 8. Evolution of deflection at the loading point vs relative abscissa for

applied normal force Fy ¼ 1 N. —, total deflection, - - -, hair deflection, -�-,
stick deflection. Standard bow with full camber, initial hair tension

T0 ¼ 45 N.
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camber. The values of T0 (40.5, 45.2, 49.0, and 52.1 N) cor-

respond to four plausible values of hair-stick distance, from

8 to 14 mm, denoted by numbers (0) to (3) in Fig. 10.

Because of nonlinearity, the transverse compliance depends

on normal force. It is defined by the slope of the force-

deflection curve (see Fig. 9).

Figure 11 shows the transverse compliance along the

bow with full camber corresponding to the four chosen val-

ues of initial hair tension. For each setting, the two curves

indicate the compliance for small forces (just above 0 N) and

high forces (around 1.5 N). The compliance for small forces

slightly decreases with initial hair tension. Increasing T0

from 40.5 to 52.1 N (29%) lowers the compliance for small

forces at the middle of the bow by 18% and by 13% at the

tip. Moreover, the nonlinearity is stronger for a low hair

tension.

E. Influence of camber on transverse compliance

When varying camber in the model, it is necessary to

change the initial hair tension accordingly so that the mini-

mum hair-stick distance remains in a range that is suitable

for playing. For each setting of camber in Fig. 10, the tension

at which a 10 mm hair-stick distance is reached is denoted

by Tplay
0 and called “playing tension.” Figure 10 shows the

four settings of camber, denoted by letters (G) to (J). Table I

gives the corresponding values of j and Tplay
0 and tension for

straight stick Tmax
0 . None of the different settings of camber

and hair tension led to contact between hair and stick within

the chosen ranges of relative abscissa and normal force.

The first noticeable effect of camber is a change in play-

ing tension. Increasing camber from j ¼ 4 mm up to j ¼ 0

mm, for example, increases the hair tension by 66% for the

same hair-stick distance. It is noteworthy that not only the

TABLE II. Standard bow with full camber. Estimated values of T0 and Ks

[see Eq. (15)] from simulation with the finite element model, for different

values of normal force Fy. The last column gives the maximum relative

error between numerical simulations of the deflection and fitted curve.

Fy (N) T0 (N) Ks (Nm�1) Max error (%)

0.1 46.1 72 2

0.5 49.9 70 8

1.0 56.1 66 17

1.5 65.5 61 27

FIG. 9. Evolution of transverse bow deflection at the loading point vs nor-

mal force for three values of relative abscissa. The deviation from a linear

evolution (dotted lines) indicates a nonlinear transverse compliance.

FIG. 10. Evolution of minimum hair-stick distance vs hair tension for four

settings of camber (4 mm, 2 mm, 0 mm¼ full camber and �2 mm). Points

denoted by letters (G) to (J) represent playing tension Tplay
0 for each camber

giving a bow-hair distance of 10 mm. Points denoted by numbers (0) to (3)

indicate four settings of hair tension for the case of full camber with (I) as a

common reference. Note that rightmost curve represents negative camber,

meaning that the middle of the stick is below the level of the bow hair before

tightening.

FIG. 11. Transverse compliance along the standard bow with full camber

for four settings of initial hair tension T0, for two normal forces: around 0 N

(- - -) and 1.5 N (—). The four cases correspond to points (0) to (3) in

Fig. 10.

780 J. Acoust. Soc. Am., Vol. 131, No. 1, Pt. 2, January 2012 Ablitzer et al.: Static model of a violin bow



minimum hair-stick distance is preserved but also the hair-

stick distance throughout the bow. Thus the bow maker can

increase the playing tension of a bow without any conse-

quence on its shape once tightened.

A second effect of camber is a change in transverse

compliance (see Fig. 12). As camber increases, the compli-

ance at small forces decreases in the middle (�22% from

j ¼ 4 to 0 mm), which is due to a higher playing tension. At

the tip, the compliance at small forces increases with camber

(þ10% from j ¼ 4 to 0 mm), contrary to what was observed

by increasing the hair tension at given camber (Fig. 11). This

effect is due to prebending of the stick.

Furthermore, if the bow is not cambered very much (G),

the nonlinearity is fairly strong around the middle: the higher

the force, the lower the compliance. Close to the tip, the

reverse trend is observable although moderate. As camber

increases, the nonlinearity tends to decrease around the mid-

dle of the bow, whereas it increases near the tip. At full cam-

ber (I), the compliance in the lower two-thirds is almost the

same for small and high forces, whereas the compliance near

the tip significantly increases with force. Moreover, the range

in length for which the compliance increases with force

becomes larger as camber increases. If the bow has an unreal-

istically large amount of camber (negative j, point J), the

compliance for high forces strongly increases in the last third.

IV. CONCLUSION

A finite element model of the assembled bow account-

ing for the geometrical nonlinearity of both stick and hair

has been presented. The model allows reproduction of the

in-plane nonlinear static behavior that is experimentally

observed when the bow is loaded (Fig. 2). The influence of

the adjusting parameters (camber, hair tension) on the

mechanical behavior of the bow has been enlightened.

Changing the hair tension does not affect the overall profile

of the transverse compliance of the bow. However, increas-

ing the hair tension tends to reduce the nonlinearity. On the

contrary, different amounts of camber lead to very different

profiles of the compliance along the bow. The nonlinearity

of the compliance near the tip is especially apparent with

increasing camber.

It remains to be seen if results from this study have

direct applications in predicting a player’s perception of bow

performance. Compliance is generally assumed to be of par-

ticular importance for bow force control: if too low, the bow

might be too sensitive to small variations of hand movement;

if too high, the bow would not be responsive enough.6 Meas-

urements and playing tests of bows with different settings of

camber and hair tension will be performed to go deeper into

this question. If significant trends emerge, the model pre-

sented in this paper would be useful to assist bow makers.

Furthermore, because the bow is often tilted toward the

fingerboard in playing,34,35 a model based on spatial beam

elements is currently developed to take into account the out-

of-plane bending of the stick.
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the violin bow: relationship between evolution and musical repertoire),” in

5th Conference on Interdisciplinary Musicology, Paris, France (October

26–29, 2009), pp. 1–7.
18N. Poidevin, “Premiers archets a travers l’iconographie (Early bow in

iconographic sources),” Musique Techn. 4, 109–124 (2009).
19A. Grütter, “A bow on the couch,” http://www.andreasgrutter.nl/ (last

viewed 10 March 2011).
20B. Rolland, “The playing parts of the bow: Focusing on the stick,” J. Vio-

lin Soc. Am. 19, 201–217 (2002).
21M. A. Crisfield, Non-linear Finite Element Analysis of Solids and Struc-

tures (Wiley, Chichester, UK, 1991), pp. 201–233.
22J. Argyris and H.-P. Mlejnek, Dynamics of Structures (North-Holland,

Amsterdam, 1991), pp. 527–561.
23R. T. Schumacher, “Measurements of some parameters of bowing,”

J. Acoust. Soc. Am. 96, 1985–1998 (1994).
24J. Woodhouse, R. T. Schumacher, and S. Garoff, “Reconstruction of bow-

ing point friction force in a bowed string” J. Acoust. Soc. Am. 108,

357–368 (2000).
25F. Gautier, V. Doutaut, and J.-M. Fouilleul, “Lutherie tools: projet collabora-

tif entre ateliers de lutherie et laboratoires (Lutherie tools: a project between

instrument makers and laboratories),” Musique Tech. 4, 21–28 (2009).
26A. Askenfelt, “Observations on the dynamic properties of violin bows,”

STL-QPSR 33, 43–49 (1992).
27A. Demoucron, A. Askenfelt, and R. Caussé, “Measuring bow force in
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