Onset-transient times

In any acoustical instrument the tone needs a certain time to develop fully. Even if we feed
the instrument with a switched-on electronically-made signal of constant amplitude, a
certain time will elapse before the instrument responds with the full amplitude. A
particularly slow response occurs if the frequency of the input signal is the same as a “very
good” resonance (i.e., with low damping) in the instrument. Then the tone-buildup time will
be particularly long. For the less responding frequencies (with greater damping) the
response time will be considerably shorter. This sounds rather backwards, doesn’t it? The
good thing though, is that the amplitudes of the low-damped resonances will be much
greater than those of the faster-responding ditto.

The reason behind, is that every resonance will continue building up until the supplied
energy equals the losses of the resonating medium. For a lossy medium, this happens fast,
and vice versa. In Fig. 1, which shows buildup time (upper panel) and relative radiation
(reaching the player’s ear; lower panel) of two violins, we can for the violin plotted with the
dark lines easily see the connection between transient duration and body resonances. For
the violin plotted with light lines, the picture is not quite that simple, for a good reason:
While the response of the first violin (a Francesco Ruggeri) was recorded in an almost
anechoic room, the second one (an Antonio Stradivari) was recorded in a normal room,
hence the longer response times, particularly visible above 1000 Hz, due to inclusion of the
sound buildup of the room itself. For the Stradivarius, the response of the room has for a
good part been measured in this frequency range. (For some details on radiation measuring
techniques, see Appendix B.)

Notice also that generally, the transient time is related to the duration of a nominal period
(i.e., the inverse of frequency), meaning that lower frequencies get longer transients, as a
rule. This is particularly visible below 1000 Hz for the violin with the dark green/red curves. It
has the consequence that low-pitched instruments (e.g., cello and double bass) by nature
have longer onset transients than their high-pitch relatives (making them sound late if no
special precautions are observed). It also has the consequence for cello and double bass that
if they are played on an undamped stage floor with pronounced resonances, their sound
buildup of these particular frequencies might appear significantly delayed in the audience.

But now, back to the violins: Fig. 1 represents the response of a series of sine waves, 0.5 Hz
apart (for details see Appendix A). In practical life it might be more interesting to see how
the instruments (Ruggeri, dark colors—Stradivari light colors) are responding to tones



composed of a fundamental and a series of fading partials, like we have in the saw-tooth
waves acting on bridges of bowed instruments (where partials are fading out ca —6
dB/octave).

Buildup time and radiation in two violins
(excited by sine waves)
— r Figure 1: Buildup time

[e)]
o

compared to radiation

o)
o

Joo (sound pressure) of two

o
o

violins: dark colors for a

Francesco Ruggeri; light

W
o

colors for an Antonio

[*]
o

Stradivari. Notice how

Amplitude [dB] Buildup time [milliseconds]

0 the long-lasting
0 transients  correspond
0 with major resonances
1‘2 AU : B AT T T of the violin body. The
g B AN VXS TR NS fonger  buildup  time
gl f,;(\,,zv ........ above 1000 Hz for the
-30 e '/ ..... :.:.::.I.I: ............. I ...... ; ..... : ..?.:; SUIEEE Stradlval'lus is malnly
100 1000 10000 due to the measuring
Frequency [Hz] technique (see text).

Fig. 2 shows an analysis of just that, based on the chromatic scale. On the Francesco violin
(dark lines), the C4 and Cs (with fundamentals 262 and 523 Hz, respectively) appear to be the
tones with the longest buildup duration (both about 23 milliseconds), corresponding to
major radiation maxima in the lower panel. Similar features can be seen for the Stradivarius,
but for slightly higher frequencies. Notice also that in the radiation amplitude panel, the
highest level is set to 0 dB for each instrument individually. They can hence not be compared
with regard to absolute levels.

Buildup time and radiation in two violins
(excited by saw-tooth waves)
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When comparing Fig. 1 to Fig. 2, notice that while fundamentals have long buildup durations
in Fig. 1, we experience in Fig. 2 a significant shortening when the higher partials are added
and the total energy buildup is considered. Furthermore, the higher and more quickly
responding partials are for a good part masking the onset of the fundamental, making its
attack sound more direct. (This is comparable to a technique often applied by organ players,
who try to avoid letting large and slowly responding pipes sound alone in the lower register.
Octaves as well as octaves of the fifth are often added in the registry to give the impression
of a faster attack.) As is clear from the Figs. 1 and 2, when the signal consists of complex
tones (i.e., tones with overtones) the amplitude-response curve is also considerably
smoother, because the signal is averaged over a large number of resonances and
antiresonances.

In sum, the response of a violin is quite fast. Melka (Ref.1) reported that no buildup was
longer than 4 milliseconds in pizzicato (where the input signal is rapidly decaying), regardless
of pitch. The longest violin onset transients were found when pianissimo was played arco on
low strings, where buildups more than a quarter of a second were quite common.

Bowed attacks

However, so far my analyses have only focused on the instrument body’s potential for
transferring a switched-on signal. In real life a pizzicato is the closest we get to this situation,
although in such cases the string’s amplitude decays so quickly that we can’t really compare
it to arco. My own PhD work was mainly focused on bowed-string attacks, their
requirements and limitations. One interesting finding was that in order to make a clean start
“from the string”, with a given bow pressure, a certain bow acceleration is required. (One
cannot start the tone directly with full bow speed without getting some initial “surface
sound”.) This acceleration, or rather range of accelerations, is directly related to the mass of
the active string, being inversely proportional to it. So, there is a limit to how fast you can
develop a tone for a given dynamic level. And: the lower the pitch, the slower the buildup.
Within reasonable limits, and with the other parameters kept unchanged, you have:

Maximum acceleration is nearly proportional to

Bow pressure x Frequency/The string’s characteristic wave resistance.

(Characteristic wave resistance is described in “Terminology”, and practical values are given
in “Unpublished : String properties.) An even acceleration implies that the amplitude of the
string increases at a steady state, like a ramp. When so, the violin body has to respond, not
to a switched-on signal, but to the ramp-like buildup of the string amplitudes. It goes
without saying that the total transient time cannot be shorter than this string buildup.
Finding out exactly what the duration of the combined transients will be requires quite
complex calculations, but if the string buildup is the slowest of the two (which is normally is),
the body response does not add significantly to the transient duration.



If you look Fig. 3, which is copied from Fig. 7 of “On the Creation of the Helmholtz Motion in
Bowed Strings” (Guettler, 2002 — in the Publication list), with a few pink, and a bright red line
added, you will see that clean attacks result from a optimal combination of bow force (i.e.,
“bow pressure”) and bow acceleration (light wedge). The pink lines are added for easy
determination of corresponding values at the abscissa and the Y-axis (ordinate). The red line
is indicating the maximum bow acceleration that would produce an attack with little or no
noise for this particular string-rosin combination. Notice that the “permitted” acceleration is
nearly proportional to the bow pressure. The string simulated is a heavy-gauge violin G-
string. (Examples of resulting attack sounds can be found at Videos/Sounds : Sound
examples of attacks from creaky to loose/slipping.)
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Figure 3: Simulated attacks resulting from a number of bow force (pressure)-acceleration combinations. The
clean onsets are found in the light wedge. Orange colors indicate creaky/raucous attacks, while blue indicates
scratchy/slipping attacks (from Ref. 2). The red line, following the right side of the wedge, indicates that
acceleration producing clean attacks rises nearly proportionally to the bow pressure.



Say, you want to play a note with a bow speed of 20 cm per second. With bow forces of 600
and 900 mN (approx. 60 and 90 gram force), maximum accelerations are 290 and 415 cm/s?,
respectively, according to Fig. 3. This implies corresponding buildup durations of 69 and 48
milliseconds for the string alone, counting from 0% to 100% amplitude, or 55 and 38
milliseconds counting in the conventional way: from 10% to 90% amplitude, as was done in
the other examples. (With this custom one avoids the uncertainty caused by background
noise and minor fluctuations in the final amplitudes.) To give you an idea what this would
sound like, play “Transient examples” from the Unpublished page. Here, a series of saw-
tooth signals with different onset-transient lengths are played (buildup durations, 0% to
100% amplitude, are prompted). Later you can play “Ricci”, which is a tiny (one-tone)
excerpt from a performance with Ruggiero Ricci as soloist. His transient time (10-90%) for
the As; on the G-string is 18 ms, including the response of the violin! Although the tone is a
whole step higher than the simulated G; of Fig. 3 (and accelerations thus can be increased
some 12%), it is pretty obvious that Ricci must have been using greater bow force than has
been part of the discussion so far. Higher bow force permits higher acceleration in general.
The original sound example here is repeated three times, then three times with the noise
removed, and finally three times the noise alone. These sound examples demonstrate that
Ricci makes a very clean attack; the intensity is not at all lost when the noise is removed...

When playing the “Transient examples”, notice that 50 milliseconds already sounds pretty
direct, and from 25 ms the attacks start sounding more and more percussive. Even
spiccato/sautillé has a short buildup before the decay, and if well played, the force-
acceleration combination will always lie within the light wedge of the relevant diagram. The
response time of the instrument itself might be more crucial for the feeling of the player
than the actual buildup time perceived by the listener, at least in the violin.

When we move the bow closer to the bridge, the light wedge will become narrower and
steeper, implying that the acceleration needs to be reduced, and/or the bow pressure
increased (see Fig. 4).
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We know that when moving the bow closer to the bridge, we can also reduce the final bow
speed, so maybe it won’t matter that acceleration must be lower? Let us first have a look at

Fig. 5, bearing in mind that [ expresses the relative bowing position (i.e., ratio of the bow’s
distance from the bridge £ divided by the length of the active string). The relative amplitude

isatall times1-(1-2 08 )2, which is the same parabola as the trajectory of the Helmholtz

corner.
Figure 5: Relation between string amplitude
: : : and required bow speed at different relative
100 bowing positions. The relative bowing
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Relative Bowing Position (£) Helmholtz motion.)

Unfortunately, moving the bow closer to the bridge will not be very helpful as far as quickly
reaching the wanted amplitude is concerned. The maximum permitted acceleration falls

more rapidly with a decreasing B than does the curve in Fig. 5. However, as the bow is

moved towards the bridge, an increase of bow pressure is natural, and will open for greater
acceleration again. There is obviously a trade off here. Increasing the bow pressure also
provides more brilliant sound, which by itself will be perceived as a quicker transient,
whether this is a physical reality or not.

The fact that the natural transients of large, low-pitched instruments have longer durations
than those of their higher-pitched family members, and that bowed strings in general have
longer transients than most winds, should be alerting string players when trying to match
their faster-speaking counterparts. One gets a quite good idea of at what time the
acceleration expires, and the tone is fully developed, just by watching one’s own right-hand
wrist: in most cases acceleration does not expire until the angle of the flexing wrist takes a
neutral position and follows the arm completely. That instant defines the “body of the
attack”, i.e., the tone reaching full sound. When playing alone or as soloist with a piano, the
very stroke onset may be perceived as the start of the tone, but when the onset is masked
by some more quickly responding instruments (like in the example of Fig. 6, below), the end
of the bow-acceleration phase defines the rhythm to a large degree.



Symphonie No 1

I
INTRODUCTION Johannes Brahms, Op. 68
Un poco sostenuto 1933-1887
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| have chosen a sound example from the opening of Brahms first symphony (played by one
of my favorite European orchestras, with a well-known conductor), where the double basses
this time sound late, probably because they want to produce as much sound as possible. In
the score you see that the bass part has repeating quavers noted Cs, but sounding C, on the
double bass. Besides that, the bass group adds the octave below, C;, which has become a
tradition after it was discovered that Brahms added the low octave in his four-handed piano
edition of the same symphony. In the first sound example, “Brahms A”, | have lifted the 30-
to-65 Hz frequency band to emphasize the basses, and make the delay effect more audible.
In the second example, “Brahms B” (the original recording, presented for decency), | think it
is still quite obvious what is happening. Rightly, the bass part is marked pesante (“heavy”,
“ponderous”), but | sincerely doubt that Brahms wanted the basses to appear after the
timpani.

Soft tones with short buildup times

The above discussion on bow force and -acceleration may leave the impression that it is
impossible to produce tones in pianissimo with attacks of short duration. This is not true. All
you have to do is to start the tones with relatively high bow force (ready on the string before
its first release), and quickly reduce the bow force while the string is increasing its Helmholtz



amplitude. (l.e., high acceleration initially, and lower acceleration as the desired string
amplitude is approaching.) In this way accents can be avoided while maintaining very direct
onsets. This technique is easiest to perform a little distance away from the frog, where quick
changes of bow force can be manipulated with greater ease. Double bassists should learn to
master this technique on their lower strings, particularly for playing short (pizzicato-like)
notes in piano or pianissimo, as often seen in the classical repertoire. The degree of success
is obviously closely related to the timing between bow force and —speed, and takes some
practicing to get right.

Pizzicato attacks

One shouldn’t think that a discussion on pizzicato attacks could be of much use. But, | hope
the sound examples here will make you think otherwise. In the symphonic repertoire there
are many places where getting a bass group together on a pizzicato note represents a
problem. Mahler’s Adagietto of his fifth symphony is one typical example. | have included a
recording of the opening bars, brilliantly played by the Chicago Symphony Orchestra,
conducted by Daniel Barenboim. Here, the very difficult timing of the double basses’ pizzicati
is executed with quite impressing precision (“Pizz Adagietto”).

One trick when playing this movement is to have the whole bass group watch the right arm
of the (1*" violin) concertmaster, and let her/his bow changes determine the exact time
points for pizz execution. But, even more importantly, all bassists should be sure to pluck the
string far from the edge of the fingerboard—closer to the middle of the active string. This
will make the tone buildup somewhat slower, and with fewer overtones, giving the
individual pizzicati much better chances of blending in. The players could amplify this effect
by using several fingers for the pizz, shaping the string more rounded at the point of
excitation. In the sound example “Imprecise Pizzicati”, you will hear a simulation of a bass
group in a concert hall playing two different attacks with exactly the same (im-) precision:
The attacks (based on recording of one double bass, repeated) are randomly distributed over
250 milliseconds (1/4 of a second). The first pizz is executed close to the middle of the string
(but not at the midpoint, as this would create a hollow sound); the second one at the end of
the fingerboard, more like a jazz pizz. Despite the fact that the timing is identical in both
examples, there is little doubt as to which pizz would suit Mahler’s fifth the best. For
Stravinsky, where the timing is usually less of a problem, and some percussiveness might be
appreciated, the second kind would probably quite often be the more appropriate one.

References
Ref. 1: A. Melka, "Klangeinsatz bei Musikinstrumenten" Acustica 23, 108-117 (1970). See "Library”.

Ref. 2: K. Guettler, "On the creation of the Helmholtz motion in the bowed string" Acta Acustica
united with Acustica Vol. 88, 970-985 (2002).



Appendix A (for the technically minded)

The analyses of Figs. 1 and 2 were performed in the following way: Two impulse-response
transfer functions (one for each violin) were calculated from two separate two-channel
recordings, where one channel contains the impulsive force signal from a force hammer
exciting the violin’s bridge, while the other channel contains the resulting sound pressure,
recorded with a microphone close to the instrument body (some of the differences in
spectral curves between the Ruggerius and the Stradivarius, might be ascribed to different
microphone positions as well as the fact that room conditions were very different). In order
to obtain a transfer function, one principally divides the spectrum of the microphone signal
by the spectrum of the force signal. In order to estimate the different buildup durations, the
resulting transfer functions were then convolved with different types of input signals; in the
present case: pure sine waves 0.5 Hz apart, and saw-tooth waves a semitone apart. This
technique is also utilized in most of the simulated violin-sound examples of the page
“Videos/Sounds”.

Rise time. Normally, one describes the time interval from 10% to 90% amplitude as the “rise
time” or “buildup time”. The reason why this particular amplitude-value interval is utilized
rather than 0% to 100%, is to avoid background noise triggering a low level start, and
ambiguities concerning the max level leaving uncertainty about exactly when the full
amplitude was reached. However, when exciting the system with single sine waves, one
easily runs into problems, as amplitude will not rise smoothly for some frequencies in the
vicinity of strong system resonances. The solution used here for switched-on signals, was to
estimate the 10-90% amplitude interval on basis of the shorter 10-50% interval—as well as
the true 10-90% amplitude interval—and then select the smaller of the two values. This first
estimate was carried out in the following way:

If we set y =1 —exp(-t), we can compute the time values tig, tso, and tgo from y=0.1, y=0.5,
and y = 0.9, respectively. We then find that (tg — t10)/ (tso — t10) = 3.74, which means that we
for switched-on signals (only) can approximate the 10-to-90% buildup duration on basis of
the often more reliable 10-to-50% ditto.

Appendix B (on techniques for measuring instrument radiation)

| do by no means claim to be a specialist in measuring radiation of bowed instruments, but |
have been participating in such events on a number of occasions, and with different
techniques employed. In general, there are two sets of measuring methods: one
approximate that measures the mobility of the instrument’s bridge, and one more accurate
that by use of microphone either tries to catch the radiation of the instrument from different
angles around it, or with the microphone inside the instrument, in which case you only get
an approximation of the radiation up to, say, 700 Hz. However, there are challenges
connected with all of the above techniques.



Measuring bridge mobility

Over a large frequency range the bridge mobility is a fair predictor of a string instrument’s
radiation. However, it fails to indicate with correct magnitude the radiation of air modes like
the Helmholtz mode (often termed Ag—in the vicinity of 270 Hz for the violin, and 230, 120,
and 65 for the viola, cello and double bass respectively). In the Helmholtz mode, the inside
air is acting like a spring while the air around the f-holes acts like a mass; the air is thus itself
resonating more than the wood under the bridge. It also fails to indicate with correct
magnitude the radiation of wood modes that are moving the bridge vertically, like for instant
some important and well radiating modes around 4000 Hz (now referred to as VH, or
Vertical Hill, as opposed to the Bridge Hill, BH, which lies some 1.5 to 2 kilo Hz below).
However, these lower air modes may well be picked up by an inside microphone during the
bridge mobility test, thus filling in some missing spots on the map. This being said, one has to
remember that some lateral action of the bridge is a prerequisite for these modes to be
excited in the first place, so some sideways action will always be visible. It might also be a
good idea to measure the impulse response in the vertical direction to get a more complete
picture.

In order to estimate the bridge mobility you have to excite the bridge with a known signal,
and measure its resulting movement. The input signal could either be an impact from a force
hammer (a device with electrical sensors that indicate the applied force as function of time);
a sine sweep (driving the bridge though a certain frequency range by means of a shaker or a
combination of coil and magnet); or MLS (“Maximum Length Sequences”, a quasi-random
signal consisting of pulses of equal amplitude, but varying widths—excited as above). The
resulting response of the bridge of the bridge can then be recorded by means of an
accelerometer or an optical device (e.g., with laser interferometry). The advantage of the
optical method is that it does not load the bridge with any weight like the accelerometer
does (a good, lightweight accelerometer weighs some 0.5 grams, causing the bridge
resonances to move ever so slightly downwards). If driving the bridge with the combination
of a tiny magnet (fixed to the bridge) and a coil (fixed externally, ca 1.5 mm away from the
magnet), the laser beam can be pointed at the magnet through the opening of the coil,
ensuring identical positions of excitation and response measurements. When utilizing impact
hammer and accelerometers, one should preferably avoid hitting the fragile casing of the
latter with the hammer, so it is quite common practice to fasten the accelerometer on the
treble side of the bridge, and hit the bridge on the bass side.

After having done such a two-channel measurement, some calculation is required to achieve
the true impulse response of the bridge. First, whatever dimension the bridge motion is
recorded in, it needs to be recalculated to velocity (e.g., the accelerometer signal must be
“integrated”). Then, because the excitation is never a true impulse (of a certain energy over
an infinitesimally short period of time), the velocity signal has to be deconvolved by the input
signal. This is simply done by dividing the frequency spectrum of the output signal by the
frequency spectrum of the input signal, a quite trivial procedure in some programs, like
Matlab and others. Then one gets the true response to an impulsive excitation where all the
energy is equally distributed over the entire frequency range. At least in theory. In practice
you’ll need to excite the bridge a number of times (with impact hammer, typically 10 to 12
times—with other methods typically 2 to 3) and subsequently average the energy, in order
achieve a reliable result.



Figure 7.5. Measuring the acosutical properties, bridge vibration sensitivity of a violin by means of
impulse excitation (D string damping, H impulse hammer, M magnet, and C electrical coil).

Figure 7: (Fig. 7.5 from Erik Jansson: “Acoustics for violin and guitar makers”, see Ref. 3, below)
Setup for measurement of bridge mobility by use of impact hammer, small magnet (less than 0.03
grams), and a coil. By this method you avoid most of the problems with wall/ceiling reflections, at
the cost of inadequate estimation of air modes and modes where the bridge is moving vertically.

Figure 7 shows the setup used by Erik Jansson for measuring bridge mobility. It is common
practice to dampen the strings by soft foam rubber, although some researchers prefer to let
the open strings ring, as they often do in real playing.

Measuring radiation with microphone(s)

There are two major obstacles when measuring radiation with microphones: (1) reflections
from the walls/floor/ceiling of the room in which the measurements are done; (2) directivity
of the radiation from the instrument.

Room reflections can ideally only be adequately dealt with by performing the measurements
outdoors, or in an anechoic chamber. The problem arises because disturbing reflections in
most cases arrive within a few milliseconds back to the instrument and the near-field
microphone. E.g., with walls/ceiling 3 meters away from the instrument on all sides (and
carpet on the floor), the reflected signal will hit the instrument after 18 milliseconds only,
mixing in with the decay of some of the major resonances of the instrument itself. In order
to get the best possible estimate of Q-values, it therefore pays to place the microphone
close to the instrument, so that the difference in loudness between the instrument’s signal
and the reflections becomes as great as possible. The sound pressure diminishes —6 dB every
time the distance from the source is doubled. (However, as far as Q-values are concerned,
the bridge-mobility method is superior.) A large room would of course have been delaying
the return of the reflected signal, but usually large rooms have quite long reverberation
times, which mess up the analyses quite a bit. If using a moderately sized room, one should
preferably pick a room with book shelves or a lot of cupboards where the doors can be
opened. Soft chairs and sofas are good absorbents too.

The Joseph Curtin Rig (Ref. B1), shown in Fig. 8, facilitates controlled measurements of
radiation in the so-called “axial plane” (see Fig. 10), i.e., the plane in which the bridge is
orientated. The violin is rotated in small steps in order to catch radiation at a number of
angles. Indoors, the distance between the microphone and the center of the instrument is



typically 20 cm (7.9 inches). Outside, where reflections for a good part are avoided, the
distance can be increased somewhat, but the number of angle steps should then be

increased proportionally.

Figure 8: Measurement of a
violin’s radiation by use of the
Joseph Curtin rig. In order to
avoid wall and ceiling reflections
the measurements were
performed outside. In the
picture, Colin Gough is mounting
an additional inside microphone
for comparison to the ordinary
outside microphone (visible just
above his right hand). The rig
permits the violin to be rotated
horizontally in small steps, while
the outside microphone
maintains its position. The
impact hammer is activated by
use of a long camera-trigger
cord.

In fact, apart from the lowest modes (the “breathing modes”, where the instrument exhibits
a significant net expansion/contraction), most modes will be “dipole” or ”"multipole”,
meaning that some part(s) of the instrument will be pushing on the external air (creating
higher local air pressure), while other part(s) of the instrument will be sucking external air in
(crating lower local air pressure). Fig. 9 gives an example of what can be happening: While
the left side of the box is creating increased air pressure on its outside, the situation is
opposite on the right side. This will of course imply a certain degree of cancellation,
dependent on the wavelength of the frequency in question, and the distance between the
counteractive instrument parts (see video examples in Ref. B2). However, this effect is most
noticeable in the so-called “near field” of the instrument (but if you place the microphone
two wavelengths away from the instrument or more, you’ll for a good part be avoiding this
field). E.g., in the near field between instrument parts moving in opposite directions, there
will be certain points where no radiation of that particular frequency can be measured, while
in the far field there will be a measurable radiation proportional to the net pulsation of the
instrument. The lateral position of the microphone thus becomes less critical.
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Figure 9: Example of multipole sound-pressure in the near
field. While the left side of the box is creating increased air

pressure on its outside, the situation is opposite on the right
side where air is sucked in. The red arrow is indicating the
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relative pressure magnitude at the different angles. Notice Figure 10: The planes with

respect to the human body.
maximum sound pressure at that distance, position B will (Ref. Spine Universe)

that while microphone positions A and C both will record

record no sound for this particular frequency.

If we estimate modes with frequencies below 650 Hz to have a relatively good net pulsation,
we can recommend a microphone distance of minimum 105 cm from the center of the violin
(i.e., 2 x 340 m/s divided by 650 Hz = 1.05 m); 340 m/s being the speed of sound in air. In
practice, unfortunately, such a distance is only functional in anechoic or very “dead” rooms.

As you can see, there are lots of considerations to balance when you want to measure the
radiation of bowed instruments. So far we have only been discussing measurements in the
axial plane. A real instrument will, of course, radiate in all planes, so for a more exact
measurement of the total radiation, we shall be needing even more microphone positions.
Fig. 11 shows such an arrangement: An array of microphones is fastened to a semicircle with
a radius great enough to stay clear of the near-field problems. There is no specific demand
on distance between the individual microphones, but it still might be a good idea to place
them with intervals less than half a wavelength of the highest frequency you want to
measure with separation between modes; particularly if you are exciting the instrument with
a continuous sound, rather than hammer blows.

Exciting the instrument by loudspeakers

There is one more way of performing radiation measurements that we have not mentioned:
Due to the “law of reciprocity”, you may well change microphones with loudspeakers, and
measure the resulting movement of the bridge, i.e., utilizing the reversed sound path.
Sometimes this might be handier, which was the case when Weinreich made his report on
“Directional tone color” (Ref. B3), where he also used a gramophone pickup for recording
the movements of the bridge.



Figure 11: Setup for radiation measurement in an
anechoic room. By placing a microphone array in
a semicircle, the radiation of an instrument
(rotated in steps) can be estimated at all angles.
The distance between individual microphones
should preferably be less than half the
wavelength of the highest frequency where
separation of individual modes is desired.

Which technique should be applied?

The technique should always reflect the purpose of the measurements. If you want to
compare two instruments with respect to radiation of all relevant frequency ranges (i.e., get
the most complete picture of its sound), the microphone setup described in Fig. 11 is
undoubtedly the best, but with the most demanding setup, by far. If the purpose is to get an
overview in terms of the body structure (i.e., details that might be changed by a violin
maker), a measurement of the bridge mobility may be sufficient. E.g., if the important bridge
hill (frequencies in the vicinity of 2500 Hz) has a weak response, the cause might be that the
“island” between the f-holes is carved too thin. The Joseph Curtin Rig applied inside an
acoustically active room gives a fair estimate of the instrument’s response during practical
conditions, but is less reliable when it comes to estimates of Q-values and response times of
the instrument itself (compare the two violins of Fig. 1, where the J.C. rig was utilized for the
Stradivarius, and its response times in the high-frequency range appear to be strongly
related to the room, in which the measurements were done). It should also be noted that
inside a room with reflecting surfaces, the microphone position is somewhat less critical (an
array is not necessary), because most frequencies will bounce back from all sides. The
exception is standing waves creating nodes or dead spots. In an anechoic room this problem
is eliminated, as there will be no standing waves.
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