Convolution (often indicated with an asterisks *; its mathematical
expression sometimes referred to as a folding integral) is a
mathematical operation for calculating a joint function from two
individual functions, e.g., an impulse-response function and a force
function. The convolved function may be continuous (as a result of an
integral) or discrete (as function of sums of digitalized, sampled values).
The easiest way to explain the technique is to look at an example of the

latter:
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Figure 1: Impulse response (left panel) to be convolved with a force
function (right panel). See text. Notice: “a.u.” stands for arbitrary units.

In Fig. 1, an impulse response is shown at the left panel. We want to
know how this system will behave when excited by the force function of
the right panel (olive line). When we digitalize the continuous force
function shown here, we get the values 1, 2, 3, 2, 1, 0, O, O,... for the
respective samples starting at sample number zero. If we consider a
series of impulses given these values (black, red, orange, green, and
cyan for the non-zero ones, respectively), we can consider a bundle of
individual responses the way it is plotted in Fig. 2, left panel:
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Figure 2: Left panel—Individual responses to impulses 1 through 5 of
Fig. 1. Right panel—The resulting function after convolution between the
impulse response and the force function.

Notice that the individual responses are shifted in time according their
respective sample positions (sample numbers) of Fig. 1. When adding
together the responses for each sample number (time step) we get the
function of the right-hand panel of Fig. 2: This is the function of the
system’s impulse response and the force function convolved. l.e., this is
how the system would have behaved if it was excited with a force
function shaped like a tent, as shown in Fig. 1, right panel.

For a conversion from the discrete, digitized version of convolution to
the continuous ditto, one may imagine the sampling period to approach



zero, so that an increasing number of individual, quasi infinitesimally
narrow impulses are positioned right next to each other, without any
interval in between. However, in the case of the truly continuous
version (different from the discrete one) both the impulse response and
the force function have to be describable as mathematical functions.

In practice, discrete convolution is most often performed by multiplying
the (complex) frequency spectra of the two functions, followed by an
inverse transform back to the time domain. FFT (Fast Fourier Transform)
is well suited for this operation. In such cases zeroes must be added to
each signal array in the time domain before FFT and convolution, so that
the number of elements becomes equal or greater than the sum of the
elements in the original signals cropped.

Deconvolution is the opposite process of convolution. E.g., the function
shown in the right panel of Fig.2 may be deconvolved by the force
function shown in the right panel of Fig. 1 to yield the impulse-response
function in the left panel of Fig. 1. This is what is done with bridge
responses excited by force hammer impacts, in order to get the true
impulse response. Practically, one can divide the measured response
spectrum by the spectrum of the hammer impact and then do an
inverse FFT, to get the impulse response. (In this case, no zero-padding
is required.)



