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The modal frequencies and bending mode shapes of a freely supported tapered violin bow are

investigated by finite element analysis and direct measurement, with and without tensioned bow

hair. Such computations are used with analytic models to model the admittance presented to the

stretched bow hairs at the ends of the bow and to the string at the point of contact with the bow. Fi-

nite element computations are also used to demonstrate the influence of the lowest stick mode

vibrations on the low frequency bouncing modes, when the hand-held bow is pressed against the

string. The possible influence of the dynamic stick modes on the sound of the bowed instrument is

briefly discussed.VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.3699172]
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I. INTRODUCTION

In contrast to the large number of research papers on the

vibrational modes of the violin, relatively few have been

published on the bow. This is somewhat surprising, as the

bow is a much simpler structure to understand and is

believed by most violinists to have a major influence on the

sound of any bowed instrument. However, the exact way in

which the vibrational modes of the bow influence the sound

of the violin remains an open question.

The first significant modern research on the vibrational

modes of the bow in 1975 was a pioneering theoretical and

experimental investigation by Schumacher1 on a freely sup-

ported bow. This was followed in the 1990s by a series of

important papers by Askenfelt2–4 and Bissinger5,6 reporting

modal frequencies and mode shapes of the freely supported

bow in addition to identifying the bouncing modes of the

bow, when resting on the string and pivoted about the frog.

Askenfelt and Guettler7–9 have more recently demon-

strated the important influence of the bouncing modes on

both short bowed strokes (e.g., sautillé, spiccato, ricochet,

martelé, etc.) and the initial transients of any strongly

attacked longer bow stroke. Guettler has also contributed an

important chapter on the bow and bowed string in The Sci-
ence of String Instruments.10

Because the diameter of the bow stick is small com-

pared with the wavelength of the radiated sound, significant

direct radiation from the bow is unlikely. This is easily dem-

onstrated by striking the tensioned bow hair against the edge

of any heavy body. Almost no sound is heard after the initial

impact, even though the bow stick is seen and felt to con-

tinue vibrating very strongly.

As Schumacher1 recognized, it is more likely that the

stick vibrations could influence the radiated sound via their

coupling to the transverse and longitudinal waves of the bow

hair. Such vibrations, excited on impact with the string, will

result in periodic fluctuations of both the force and the relative

velocity between bow hair and string at the point of contact.

Both effects could, in principle, affect the excitation of

Helmholtz kinks via the slip-stick mechanism11 and hence

the spectrum of the radiated sound, as described by Cremer12

(Chap. 5).

In a previous paper,13 analytic, computational, and

direct measurements were used to examine the influence of

taper and camber on the low frequency dynamics and elastic

properties of the bow. In this paper, a similar approach is

used to examine the vibrational modes of the bow and their

potential influence on the sound of the instrument via their

coupling to the vibrating string and hence to the radiating

modes of the violin body.

II. STICK MODES

A. Introduction

Figure 1 defines the orthogonal set of axis and geometry

used to describe the vibrational modes of the bow and

coupled bow hair. It illustrates the way that the vibrations of

the head of the bow can couple to the various modes of

vibration of the bow hair, which via the hair-string contact

could either transfer energy to the radiating modes of the

violin body or influence the generation of circulating Helm-

holtz kinks on the string.

For a continuously bowed note, the slip-stick generation

of Helmholtz kinks will depend on the downward force of

the bow on the string, which will be influenced by transverse

vibrations of the bow in the y-direction. The relative velocity
of string and hair at the point of bow contact will be influ-

enced by the longitudinal vibrations of the bow hair excited

by the in-plane (xy-plane) rotations and longitudinal (y-
direction) vibrations of the bow head. The circulating kinks

on the bow hair excited by the slip-stick mechanism will, in

turn, excite both in- and out-of-plane vibrations of the bow

stick under normal playing conditions, when the bow stick is

tipped on its longitudinal axis away from the bridge.

B. The freely supported bow

First consider the vibrations of a highly simplified bow

model13 comprising a constant diameter straight bow stick

with equal length rigid levers at its ends representing the frog
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and head of the bow, between which the bow hair would nor-

mally be stretched.

The important bending modes will have frequencies and

mode shapes closely related to the bending modes of a uni-

form cross-section slender bar weakly perturbed by the addi-

tional masses of the frog and head at the ends of the bow

stick.

For a slender, uniform properties, constant cross-section

bar of radius a and length l, the bending wave displacements

satisfy the wave equation

EK2 d
4y

dx4
¼ q

d2y

dt2
; (1)

where E is the elastic constant, K¼ a/2 the radius of gyra-
tion of the bar, and q its density.

For a freely suspended bar, the vibrational frequencies

are given by

fn ¼
pa
16‘2

ffiffiffi
E

q

s
½3:012; 52; 72;…::; ð2nþ 1Þ2� (2)

where n is an integer defining the mode number (see, for

example, Fletcher and Rossing14).

For a freely supported bar, the boundary conditions of

zero external couple and force requires the second and third

spatial derivatives of the displacements at each end to

be zero. This results in a combination of wave-like and

exponentially decaying solutions for the displacements y
varying with distance xj j from each end approximately as

[sinðkn xj j � p=4Þ � e�kn xj j=
ffiffiffi
2

p
]eixnt, with xn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EK2=q

p
k2n .

Apart from a small correction from the decaying exponential

component of the wave solution from the far end of the bar,

the outermost nodes of the sinusoidal spatial components are

located at almost exactly kn/8 from the ends of the bar, so

that l � (nþ 1/2)k/2 with mode frequencies given by Eq.

(2). Adding the frog and head of the bow inhibits motion at

the ends of the stick, with the outermost nodes moving closer

to the ends of the bar. This decreases the mode frequencies

with the (2nþ 1)2 terms approaching (2n)2 for heavy addi-

tional end masses. For example, Bissinger and Ye6 observed

a 2.6% drop in stick frequencies on holding the bow at the

frog relative to being freely suspended, accompanied by a

fractional increase in damping of almost 2.5.

Figure 2 illustrates the first seven in-plane bending

modes and a higher mode illustrating coupling to the longitu-

dinal vibrations of the stick. The modes are for a freely sup-

ported straight but tapered violin bow, with attached head

and frog but no bow hair. The computations used COMSOL

finite element software.15 The finite element geometric

model is described in an earlier paper.13 The stick is 70 cm

long with a Tourte-Vuillaume tapered diameter16 increasing

from 5.3mm at the tip-end to 8.6mm over the upper 59 cm

of the stick. The assumed taper varies with diameter as

dðxÞ ¼ �6:22þ 5:14 logðxþ 175Þ; (3)

where x is measured from the upper end of the tapered stick

with all distances in mm. The diameter of the lower 110mm

of the stick on which the stick is held and the frog slides is

constant at 8.6mm. The computations assume a uniform

along-grain elastic constant of 22GPa and a density of

1200 kgm�3 (typical values cited by Askenfelt4). The shaped

head of the bow and frog were assumed to be rigid with

masses of 1.2 g and 10 g, respectively. The resulting mass M
of the bow (without hair, screw, end-button and leather/

metal-wire protective bindings) was �49 g. The illustrated

modes and frequencies are for the stick with bow head and

frog attached. The figures in brackets list the increased

modal frequencies on removal of the frog.

Note the increased amplitude and decreased wavelength

of the bending modes in the upper half of the bow resulting

FIG. 1. (Color online) The geometry of the bow and string illustrating the

polarization directions of the two bending, the longitudinal and torsional

modes of the bow stick, and their coupling to the stretched bow hairs.

FIG. 2. The first seven in-plane bending modes and frequencies of a

straight, Tourte-tapered, violin stick with attached frog and one higher mode

illustrating bending-longitudinal wave coupling. The frequencies in brackets

are those with the frog removed. An additional example of a higher mode is

illustrated showing coupling to longitudinal vibrations of the tapered stick.
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from the reduced diameter and consequent increased flexibil-

ity. More important are the hatchet-like rotations of both the

head of the bow and, to a lesser extent, the frog resulting

from the bending deflections at the “free” ends of the bow.

This results in both vertical and horizontal vibrations at

both ends of the stretched bow hair. Such motion leads to

strong coupling to the transverse and longitudinal vibrations

of the bow hair, both of which could, in principle, affect the

slip-stick excitation of Helmholtz kinks, as described by

Schumacher.1

To conserve linear momentum along the length of the

freely supported bow, the rotations of the head of the bow

induce a coupling to the longitudinal vibrations of the bow

stick. This results in the coupled kL/2-longitudinal and bend-

ing wave mode at 2.71 kHz illustrated in Fig. 2.

Table I compares the modal frequencies of a freely sup-

ported, constant diameter, slender beam with those computed

using the finite element model for the Tourte-tapered bow.

Additional comparisons are made with the measurements by

Askenfelt4 on a bow of unspecified origin and some measure-

ments of our own on a number of bows of varying quality.

The modal frequencies are for the xy, in-plane, vibrations of
the bow.

The bending mode frequencies of the ideal uniform

beam have been uniformly scaled so that the frequency of the

2nd mode is identical to the computed value for the tapered

bow. The figures in italics in Table I show the ratio of mode

frequencies to that of the 2nd mode, allowing easy compari-

sons between the theoretical, computed and measured values

unaffected by global scaling factors like density, elastic con-

stant, and length and diameter. The normalization has been

made to the second mode rather than the fundamental, as the

higher order modes are less strongly perturbed by coupling to

the vibrations of the tensioned hair.

The ratios and absolute values of the modal frequencies

of a simple beam are very similar to those computed and

measured for real bows, as previously noted by Askenfelt,2

despite the inevitable differences in their tapers, cambers

and additional frog and bow head masses. Nevertheless,

there are significant (�10%) variations in the ratios of the

modal frequencies. Such variations reflect differences in

taper and variations in elastic constant and density along the

length of real bows and, to a lesser extent, variations in their

bending profiles. However, apart from the lower modal fre-

quencies of the Antoni bow provided with an inexpensive

electric violin, there are no dramatic differences between the

modal frequencies or their ratios that could be used to corre-

late reliably with bow quality. The measurements were all

made with a fairly relaxed bow tension, to avoid significant

perturbation from coupling to any attached bow hair.

In addition to the in-plane bending modes, there is an

equivalent set of out-of-plane bending modes, shown in

Fig. 3. The mode shapes illustrate the net amplitude of bow

displacements on the surface of the bow. This includes cir-

cumferential displacements from induced torsional vibra-

tions in addition to the transverse bending deflections. The

torsional vibrations are excited by the need to conserve the

axial angular momentum of the bow resulting from the side-

ways swinging of the head and to a lesser extent the frog.

This accounts for the apparent thickening of the mode

shapes, when significant torsional vibrations are excited.

Further evidence for the coupling of the in- and out-of-

plane bending waves to the longitudinal and torsional

TABLE I. The frequencies (Hz) of the first seven in-plane modes of a freely

supported slender beam compared with finite element predictions for a

Tourte-tapered bow stick with a 1.2 g head without frog and measured

modal frequencies for a number of untensioned bows of varying quality.

The numbers in italics indicate the ratio of mode frequencies to that of the

2nd mode.

Mode number 1 2 3 4 5 6 7

Simple beam 54.8 152.3 299 493 737 1030 1371

0.360 1 1.96 3.24 4.84 6.76 9.00

Computed

without frog

56.9 152.3 296 489 728 1015 1345

0.374 1 1.95 3.21 4.78 6.66 8.83

Computed

with frog

50.7 141 280 468 698 979 1288

0.360 1 1.99 3.32 4.95 6.94 9.13

Askenfelt

(unspecified)

60 160 300 500 750 1000 1300

0.381 1 1.88 3.13 4.69 6.25 8.13

Bausch 62 159 306 537 785 983 1291

0.390 1 1.92 3.38 4.94 6.18 8.12

Hill 55 148.1 328 479 743 920 1183

0.371 1 2.21 3.23 5.01 6.21 7.99

Sartori 59 147.3 326.4 464.1 735.2 927 1139

0.40 1 2.22 3.16 4.99 6.29 7.73

Antoni 50 138 267 422 590 860 1049

0.360 1 1.94 3.05 4.27 6.23 7.60

FIG. 3. Out-of-plane bending modes of a straight, Tourte-tapered, bow for a

number of illustrative modes. The plots illustrate the total displacements of

the stick, bow head, and frog with no bow hair attached including the

coupled torsional vibrations resulting in a thickening of the mode shapes.
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vibrations of the bow stick will be demonstrated in the next

subsection on the admittance at the edge of the bow head

supporting the bow hair.

C. Bow stick effective masses and admittances

The dynamical properties of the bow stick can be char-

acterized by the admittance of the bow at the supported ends

of the stretched bow hair. For completeness, this would

require admittances to be measured in all three orthogonal

directions at both ends of the bow. However, because the

vibrational amplitudes at the head end of the bow are always

considerably larger than those at the frog, as a first approxi-

mation, the problem can be simplified by focusing on the

admittances and subsequent coupling to the tensioned bow

hair at the bow head alone.

The complex admittance of the nth stick mode measured

in the x-direction at the central point of hair support on the

head of the bow can be written as

An;xðxÞ ¼
vn;xðxÞ
Fx

¼ ix
mn;x

1

x2
n � x2 þ ixxn=Qn

; (4)

where vn,x is the velocity of the nth mode induced by an

applied sinusoidal force of amplitude Fx in the same direc-

tion, xn is the resonant angular frequency of the selected

mode, Qn its Q-value, and mn,x its effective mass in the x-
direction at the point of measurement. The in-line effective

mass is defined by attributing all the kinetic energy KEn of

an excited mode to an effective point mass mn,x at the point

of excitation, such that

1

2
mn;xv

2
n;x ¼ KEn: (5)

Equivalent expressions can be used to describe the

effective masses and admittances in the y- and z-directions.
Table II lists the computed effective masses of the mod-

eled Tourte-Vuillaume tapered bow, at the inner edge of the

bow head supporting the attached hair. Symmetry restricts

motions to the x- and y-directions for the in-plane

stick modes and to the z-direction alone for the out-of-plane

modes. Note the lifting of degeneracy of the low frequency

modes, resulting from the geometry of the bow stick, head

and frog, and the irregular orderings of the higher in- and

out-of-plane bending modes resulting from their coupling to

the longitudinal and torsional vibrations, respectively. The

measured and computed modes are the independent normal
modes describing their coupled motions.

For relatively weakly damped normal modes (Q � 1),

damping is only important in the immediate vicinity of a res-

onance, so that the x-direction admittance from all modes

can be written as

Axðf Þ ¼
X

n

if

2pmn;x½f 2n ð1þ i=QnÞ � f 2� (6)

with similar expressions for the admittance in the y- and

z-directions.

Figures 4(a) and 4(b) show plots of the real part of the

computed frequency dependencies of the in-line admittances

at the edge of the head of the bow using the effective masses

computed above with “typical” Qn-values of 30 for the freely

supported bow. If measured Q-values were available, the

height of each resonance would simply be scaled by the

measured value.

The admittances have been plotted on a logarithmic

scale to accommodate the large changes in magnitude with

frequency. Frequencies have been plotted on a square root

scale, which would give regularly spaced resonances for

bending waves on a simple slender beam.

Consider first the two lower traces in Fig. 4 describing

the in-plane admittances. At low frequencies, the admittance

peaks in the transverse y-direction bending modes of the stick

are initially considerably larger than those in the longitudinal

x-direction. However, as the frequency increases, the increas-

ingly large hatchet-like rotations of the head of the bow lead

to larger deflections along the length of the bow than in the

transverse direction, as can be seen from the mode shapes in

Fig. 2. As a result, above around 400Hz, the bending wave

displacements of the inner edge of the bow head supporting

the stretched hairs are dominated by motion along rather than

displacement perpendicular to the length of the bow.

TABLE II. Computed frequencies and effective masses at the point of hair

attachment to the head of the bow of the in-plane (xy) and out-of-plane (zx)
“bending” modes of a freely supported, Vuillaume-Tourte tapered bow stick

and attached frog.

Frequency (Hz) In-plane Out-of-plane mz (g) my (g) mx (g)

50.7 ? 8.2 465

56.3 ? 26.9

141.1 ? 12.3 181

143.2 ? 8.30

279.9 ? 20.8 60.1

293.6 ? 38.0

467.7 ? 37.9 47.1

468.9 ? 11.4

698.0 ? 82.3 22.3

710.4 ? 9.9

901.3 ? 2.1

979.0 ? 214 20.6

1106 ? 3.4

1288 ? 3.2 103 10.6

1400 ? 13.9

1665 ? 2.8 103 10.3

1771 ? 62

2030 ? 164 5.9

2167 ? 27.5

2328 ? 3.4

2524 ? 85.6 6.4

2711 ? 112 12.3

2754 ? 8.0

3179 ? 144 19.6

3273 ? 14.7

3561 ? 41 6.9

3873 ? 16.9

4180 ? 11.6

4221 ? 38 8.5

4543 ? 7.7
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In addition, the need to conserve linear momentum

involving the hatchet-like rotations of the bow head results

in a strong coupling between the bending and longitudinal

vibrations of the bow. This gives rise to an additional peak

in the admittance at around 2700Hz from the coupled k/2
longitudinal resonance of the bow.

The upper trace shows the computed admittance for the

out-of-plane transverse bending modes multiplied by 100 to

differentiate it from the in-plane admittances. In this case,

the varying heights and irregular spacings of the resonances

result from the strong coupling between the transverse bend-

ing and torsional vibrations of the stick induced by the side-

ways swinging rotations of the head and frog of the bow.

D. Coupling to tensioned bow hairs

1. Experimental

If the bow stick modes are to influence the sound via the

radiative modes of the body of the instrument or by influenc-

ing the slip-stick excitation of Helmholtz kinks, they can

only do so via their coupling to the tensioned bow hairs in

contact with the string.

Figure 5 compares fast Fourier transform (FFT) spectra

obtained from impulse response measurements on a fine bow

by Bausch and an experimental bow, with the horse hair

replaced by a tensioned guitar string of similar mass (�4 g)

and bow tension. Such a replacement circumvents the prob-

lem of the variations in lengths and physical properties of

the individual hairs making up the ribbon of bow hair, which

results in highly non-linear stretching properties at low

tensions.4 Impulse responses were measured with a minia-

ture accelerometer (0.4 g) mounted on the head of the bow.

The upper two spectra compare the resonances of the

freely supported Bausch bow and experimental bow. The

bottom spectra illustrates the dramatic increase in damping

of the stick resonances, when the bow is held by a player in

the normal way.

The spectra for the lightly tensioned Bausch bow,

reveals at least four, heavily damped, low frequency “hair”

resonances below the lowest stick resonance at �65Hz, but

little evidence for additional hair modes at higher frequen-

cies. This can be explained by the variation of hair properties

across the width of the ribbon resulting in a number of sepa-

rate sections of the ribbon tending to vibrate independently

of each other with slightly different resonant frequencies.

Mutual friction within and between such sections would

account for the large damping observed, in addition to lock-

ing the vibrations of adjacent sections together. In practice,

the hair tension has to be increased to a significant fraction

of the normal playing tension of around 60N before any

higher modes of hair vibration become clearly defined.

In contrast, many weakly damped higher-order modes

are observed when the bow hair is replaced by the flexible

guitar string of similar mass. This demonstrates that, in prac-

tice, the damping of hair vibrations is largely due to the vari-

ation in mechanical properties of the individual hairs rather

than their coupling to the stick vibrations.

For both the Bausch and experimental bow, a number of

well-defined, weakly damped, stick resonances can be identified.

However, on holding the bow in the normal way, the damping

of such modes increases dramatically, as illustrated by the lowest

set of measurements. This suggests that the intrinsic damping of

the wood used for making the bow stick is unlikely to be impor-

tant in any assessment of the playing qualities of a bow.

Figure 6 illustrates the affect of the bow-hair interaction

on the resonant frequencies of the lowest two normal modes

of the experimental bow with the tensioned guitar string

replacing the normal hair. The variations in normal mode

FIG. 4. (Color online) The real part of the computed admittances of the

untensioned bow stick at the hair-supporting edge of the bow head, for in-

line forces in the x, y, and z directions. The frequency is plotted on a f 1=2

scale. The lower two admittances Ax and Ay show the resonances of the in-

plane vibrational modes with displacements parallel and perpendicular to

the length of the stick. The upper curve Az shows the out-of-plane mobility

from transverse stick vibrations perpendicular to the length of the bow. Az

has been multiplied by 100 to distinguish it from the in-plane admittances.

The Q-values of all resonances have arbitrarily been set to 30.

FIG. 5. (Color online) Time-delayed FFT spectra for the in-plane transverse

vibrations of a fine bow by Bausch and an experimental bow with a wire of

similar mass (�4 g) replacing the stretched hair. The upper two spectra are

for the freely supported bows, while the bottom spectrum is for the experi-

mental bow held firmly by the player in the normal way.
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frequencies are plotted as a function of increasing tension

represented by half the measured frequency of the second

“hair” resonance at �
ffiffiffiffiffiffiffiffiffiffiffi
T=m‘

p
, as this mode is much less

strongly perturbed from coupling to the bow stick than the

fundamental.

By tapping the bow in different directions and positions

along the bow stick, with the measurement axis of the accel-

erometer changed accordingly, it was possible to identify the

frequencies of the coupled mode vibrations in both the in-

and out-of-plane directions, as indicated by the lines drawn

through the measurements as guides to the eye.

The measurements illustrate the strong coupling

between the stick vibrations and transverse hair vibrations.

This leads to the familiar veering and splitting of the normal

mode frequencies as the resonant frequencies of the coupled

vibrations approach and cross each other.

As the tension increases, the frequency of the lowest

normal mode deviates markedly below that of the uncoupled

“hair” resonance, with the normal mode acquiring an

increasing component of the lowest frequency stick vibra-

tions. When their uncoupled frequencies would otherwise

cross, the normal modes are split in frequency by an amount

proportional to the strength of the coupling, which is slightly

larger for the in-plane than the out-of-plane vibrations. At

coincidence, the two normal modes involve the stick and

stretched bow hair vibrating together in- and out-of-phase,

with equal energy and damping. This results in split resonan-

ces of almost equal strength and widths.

At higher tensions the component of hair vibration in

the lowest normal modes decreases, with the lowest mode

transforming smoothly into that of a slightly depressed fre-

quency stick mode. Similarly, as the tension increases from

zero, the initial stick mode transforms smoothly into a mode

dominated by the hair vibrations.

At low tension, the frequency of the out-of-plane stick

vibrations is slightly larger than the in-plane frequency. Fur-

thermore, the measurements suggest a slight decrease in res-

onant frequency with increasing tension along the length of

the stick. This is consistent with the predicted decrease in

resonant frequency of a straight stick, when the tension

becomes a significant fraction of the critical Euler buckling

tension of �70N.13 In contrast, the frequency of the in-plane

“stick” mode initially remains almost constant as the camber

is decreased on increasing tension.

The strong coupling between the lowest vibrational

modes of the bow and the stretched bow hair may well con-

tribute to the “feel” of the hand-held bow. Such coupling

will result in the transfer of an appreciable amount of low

frequency energy to the bow from the tensioned hair in con-

tact with the vibrating string. This energy could, in principle,

be sensed by the player holding the bow, even though the

stick vibrations themselves radiate very little sound. The

strength of such coupling will depend on the height of the

bow tip, the bow tension, the bending and taper of the bow

and the relative masses of bow and stretched bow hair.

In practice, both the in-plane and out-of plane modes of

the bow may contribute to the players “feel” of a bow, as the

bow is usually inclined at an angle away from the bridge, so

that both in-plane and out-of-plane bending modes will be

excited.

E. Influence of bow on radiated sound

In a preliminary investigation of the potential influence

of bow vibrations on the sound of the violin, the sound pres-

sure was measured at the “acoustic center” of the violin cav-

ity (on the central axis approximately in line with the f-hole
notches). Measurements were made before and after resting

a bow halfway along the bow hair on the inner two strings

close to the bridge, which was give a short tap in the bowing

direction on its upper bass-side corner, as plotted in Fig. 7.

With such a microphone placing, at an antinode of

finite-element computed A1 (500Hz) and A2 (1154Hz) in-

ternal air resonances, the internal sound pressure below

�1 kHz is almost entirely determined by the coupling of the

violin plate vibrations to the low frequency Helmholtz air

vibrations at� 290Hz and the significantly higher frequency

A3 (1212 Hz) mode. The resonantly excited internal sound

pressure is then closely related to the radiated monopole

sound intensity radiated by the signature A0, CBR, B1-, and
B1þ signature modes. At higher frequencies, the internal

sound pressures will still be proportional to the intensities of

the increasingly directional radiated sound. Any changes in

the internal sound pressures will therefore reflect similar

changes in the radiated sound pressures.

Comparison of the two sets of measurements shows that

placing the bow on the violin makes very little difference in

FIG. 6. (Color online) The normal mode frequencies of an experimental

violin bow with the hair replaced by a metal wire of similar mass measured

as a function of increasing “hair” tension. The modal frequencies are plotted

as a function of increasing tension represented by half the measured fre-

quency of the second hair mode, which is less strongly perturbed by the cou-

pling to the stretched bow “hair.” The smooth lines drawn through the

experimental points are simply guides for the eye to distinguish the in-plane

from the out-of-plane normal modes. The dashed line is half the frequency

of the second “hair” mode, which indicates the overall slope expected for

the hair resonance, in the absence of coupling to the stick vibrations.
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the recorded sound, especially above 1 kHz, apart from a

slightly reduced response above around 3 kHz. This is almost

certainly due to the additional mass loading of the bow rest-

ing on the bridge.

Below the strong A0 resonance at around 290Hz, the

bow introduces some additional weak structure, which may

well result from low frequency stick and hair resonances.

However, even in this strongest possible coupling case, the

changes in sound levels are typically only around 1 dB or

less and are unlikely to be perceptually significant. The

measurements also suggest the bow slightly increases the

damping of the signature A0 and B1- modes and contributes

some additional weak structure in the range 300–500Hz,

which may also be related to bow resonances.

Such features are small and would be significantly

smaller if the bow had been placed at a normal bowing posi-

tion along the strings. Nevertheless, it would be interesting

to pursue such measurements further, to place more reliable

upper limits on the possible contribution of the bow’s

induced vibrations to the radiated sound. Independent meas-

urements of the radiated sound produced by the tapped violin

stick alone show that any direct radiation from the stick is

extremely small—almost certainly much less than the 30 dB

difference in radiated sound pressure observed for similar

strength taps on the violin bridge and directly on the bow

stick when raised slightly off the string.

F. Theoretical model

The coupling of the freely supported bow stick vibra-

tions to the transverse and longitudinal vibrations of the hair

can be represented by loading the head end of the stick by

the input impedances ZT and ZL of equivalent open-ended

transmission lines—ignoring the smaller stick vibrations at

the frog.

The loading of the hair is assumed to leave the vibra-

tional mode shapes of the stick unchanged, though the cou-

pling will affect the frequencies and strengths of the resulting

new set of normal modes describing the coupled vibrations of

the stick and both longitudinal and transverse hair vibrations.

First consider the response of the coupled system to an

in-plane sinusoidal force Fy e
ixt at the head of the bow in a

direction perpendicular to the stretched bow hair, as illus-

trated by the inset in Fig. 8. Each in-plane bow stick mode

involves velocities at the hair-supporting head end of the stick

at a mode-dependent angle hn to the applied force. This angle

can be related to the effective masses for local velocities along

the transverse (T or y), longitudinal (L or x), or hn directions.
The kinetic energy of a mode can be expressed in terms of the

local velocities, such that 1
2
mn;Tv2n;L ¼ 1

2
mn;Lv2n;L ¼ 1

2
mnv2n, so

that tan2hn¼mn,T/mn,L. Table I lists the effective masses of

the first 14 freely supported dynamic stick modes below

4.6 kHz for the finite element modeled Tourte-tapered bow.

Initially, damping will be ignored. The dynamics of each

stick mode is then equivalent to that of a mass mn forced to

slide on an inclined plane at a mode-dependent angle hn. Its
motion is subject to its own in-line restoring force determin-

ing the modal frequency xn in addition to the hn-components

of any applied forces—in this example, forces from trans-

verse and longitudinal waves excited on the bow hair. Such

forces are determined by the sum of induced velocities from

all excited stick modes, VL ¼ P
vn;L ¼ P

vnsin hn and VT

¼ P
vn;T ¼ P

vncos hn, flowing into the input impedances

ZL and ZT of the acoustic transmission lines.

For a given mode, the velocity �n along the constraining

angle hn is then given by

FIG. 7. (Color online) Sound pressure at the acoustic center of the violin

cavity of a Vuillaume violin with damped strings tapped at the bass-side cor-

ner of the bridge in the bowing direction (upper curve) and repeated (lower

curve) with a violin bow pressed firmly down on the middle two strings

close to the bridge halfway along the bow hair. The two sets of measure-

ments have been shifted relative to each other for easy comparison.

FIG. 8. (Color online) The frequency dependence of the real part of the ad-

mittance at the head of the bow for a sinusoidal force in the direction shown.

The uppermost curve is for the freely supported bow without attached bow

hair and the lowest plot for the admittance of the bow hair alone at a tension

of 60N. The plots between are for the bow with attached bow hair, at ten-

sions 4, 20, 45, and 60N, with each succeeding plot shifted relative to each

other by �30 dB for clarity. The lowest plot is the input admittance for

transverse waves on the bow hair at tension 60N on the same scale but

reduced in value by 160 dB.
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mn½ixþ x2
n=ix�vn ¼ ðF� ZTVTÞ cos hn � ZLVL sin hn:

(7)

VT and VL can be determined self-consistently by summing

the component velocities from all the stick modes, so that

VT ¼
X ix

mn;T ½x2
n � x2�

� �
ðF� ZTVTÞ

�
X ix

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mn;Tmn;L

p ½x2
n � x2�

" #
ZLVL; (8)

VL ¼
X ix

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mn;Tmn;L

p ½x2
n � x2�

" #
ðF� ZTVTÞ

�
X ix

mn;L½x2
n � x2�

� �
ZLVL; (9)

with the trigonometric functions described in terms of effec-

tive masses.

The admittance in the driving force direction, AT¼VT/FT,

is then given by

AT ¼ ATT þ ðALLATT � A2
TLÞZL

ð1þ ATTZTÞð1þ ALLZLÞ � A2
LTZTZL

; (10)

where the admittances ATT, ALL, and ATL are given by the

summations in square brackets in Eqs (8) and (9).

Damping can be incorporated by adding a dissipative

term to the modal frequencies of the freely supported stick,

withx2
n ! x2

n 1þ i=Qnð Þ, and complex propagation constants

for the lossy transmission lines, such that ZT ¼
ffiffiffiffiffiffiffiffiffiffiffi
Tm=‘

p
=

tanhðfT‘Þ with fT ¼ x 1� i=QTð Þ=cT and ZL ¼ ffiffiffiffiffiffi
Eq

p
S=

tanhðfL‘Þ with fL ¼ xð1� i=QLÞ=cL, where cT ¼
ffiffiffiffiffiffiffiffiffiffiffi
T‘=m

p

and cL ¼
ffiffiffiffiffiffiffiffiffi
E=q

p
are the speeds of transverse and longitudinal

waves along the ribbon of hair of mass m and cross-sectional

area S stretched to a tension T (see, for example, Ramo

et al.,17 Table 1.23).
In the absence of coupling to the longitudinal modes of

hair vibration (ZL¼ 0), Eq. (10) reduces to

AT ¼ 1

1=ATT þ ZT
: (11)

This has a simple interpretation, with the velocity in the driv-

ing force direction determined by the parallel combination

of stick mode impedances in series with the input impedance

of the transmission line modeling the transverse modes of

vibration of the stretched bow hair.

Coupling to the longitudinal modes adds an additional

channel for energy flow, leading to the rather more compli-

cated expression in Eq. (10).

Figure 8 illustrates the predicted frequency dependen-

cies of the real (in-phase) component of the admittance in-

line with the driving force. The plots have been evaluated

from the above equations using the computed effective

masses listed in Table I. The ribbon of bow hair is assumed

uniform along its length ‘ ¼ 65 cm, with 175 active hairs of

elastic constant 5.5GPa, density 1300 kgm�3 and diameter

0.2mm giving a total mass of �4.6 g—averages of values

cited by Askenfelt.4 For illustrative purposes, Q-values of 20
and 10 have been assumed for transverse and longitudinal

waves on the bow hair and 10 for the stick modes. In prac-

tice, both the stick and hair vibrations are likely to be more

heavily damped—especially when the bow is held by the

player and at low bow tensions when individual hairs are

tensioned by different amounts.

The upper two plots illustrate the slight increase in fre-

quency of the “stick” frequencies on attaching the tensioned

bow hair, which acts as a compressible spring at frequencies

below its first longitudinal resonance at around 1.5 kHz. On

increasing tension, stronger peaks from the transverse wave

resonances become more evident. As the lowest transverse

wave resonance approaches the lowest stick resonance at

around 60Hz, the familiar veering and splitting of the result-

ing normal mode resonances is observed, with a splitting

comparable with measured values plotted in Fig. 6. The trans-

verse wave hair resonances die out quite rapidly because of

damping. At high frequencies the terminating impedance at

the head of the bow from transverse waves is then simply the

characteristic mechanical impedance
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Tmh=‘

p
, as illustrated

in the lowest plot showing the real part of the input admit-

tance of the equivalent transmission line.

On increasing bow tension, the lowest transverse hair

resonance increases toward and eventually crosses the lowest

“stick” resonance. This results in an appreciable veering and

splitting of the resulting normal mode frequencies, as illus-

trated for tensions of 20, 40, and 60N shifted relative to

each other by 30 dB. The lower plot shows the input imped-

ance of the transmission line with peaks at the resonant fre-

quencies, with an impedance approaching the characteristic

transmission line impedance
ffiffiffiffiffiffiffiffiffiffiffi
Tm=‘

p
as the transverse wave

resonances die out.

Such characteristics clearly describe important features

observed in modal measurements on the bow stick. Of more

direct musical importance is the potential influence of the

stick modes on the excitation of sound via their influence on

bow hair vibrations.

In an attempt to assess the importance of such coupling,

the input admittance of the bow hair at its midpoint has been

derived for excitation transverse parallel to and along the length

the hair, as illustrated schematically by the inset in Fig. 9.

For example, the transverse impedance ZHT is given by

ZHT ¼
ffiffiffiffiffiffiffiffiffiffiffi
Tm=‘

p 1

tanhðfT‘=2Þ

�

þ ZTload coshðfT‘=2Þþ
ffiffiffiffiffiffiffiffiffiffiffi
Tm=‘

p
sinhðfT‘=2Þffiffiffiffiffiffiffiffiffiffiffi

Tm=‘
p

coshðfT‘=2ÞþZTload sinhðfT‘=2Þ

#
; (12)

where ZTload is the terminating impedance at the head end of

the stretched bow hair presented by the stick modes and lon-

gitudinal waves on the stretched bow hair.

To evaluate ZTload, consider the response of each indi-

vidual mode to a transverse driving force F at the head of the

bow. This can be simply derived from Eq. (12) by setting

ZT¼ 0, so that
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ZTload ¼
1þ ALLZL

ðALLATT � A2
TLÞZL þ ATT

: (13)

Similarly, for longitudinal waves

ZLload ¼
1þ ATTZT

ðALLATT � A2
TLÞZT þ ALL

: (14)

Figure 9 plots the real part of the midpoint bow hair admit-

tance for both transverse and longitudinal waves, with Q-val-
ues for the stick, transverse, and longitudinal hair resonances

of 30, 20, and 20, respectively, which allows direct compari-

son with admittance measurements by Askenfelt.4

The upper two plots show the transverse wave admittan-

ces for two bow tensions (25 and 55N) with the lower ten-

sion plot increased by a factor of 100 for clarity. In both

cases the admittance curve for rigid end supports is shown

for comparison.

Because the hair is excited at its midpoint, only n-odd
modes are excited. Apart from the anticipated veering and

splitting of the lowest hair resonance by coupling to the fun-

damental stick resonance, the admittance is dominated by

the transverse wave resonances of the bow hair. This sug-

gests that coupling to the stick vibrations via the transverse

bow-hair vibrations is most unlikely to contribute to the

sound of the instrument other than possible influence of the

lowest frequency transverse on the slip-stick mechanism.

The lowest solid curve shows similar data for the mid-

point longitudinal excitation of the bow hair. The admittance

is again plotted for two bow tensions—25N (dashed curve)

and 55N (solid). The lowest dashed curve shows the longitu-

dinal admittance for rigid end supports, with the first half-

wave longitudinal stretched hair resonance at around 1.5 kHz.

Apart from the influence of the transverse hair modes on the

lowest stick mode, the response is dominated by the longitu-

dinal stick resonances superimposed on a broadened resonant

response from the longitudinal modes of the hair. The strong

stick resonances are induced by the hatchet-like rotations of

the head of the bow, which relaxes the rigid end constraint,

particular at resonant stick frequencies. The admittance will

also include a reactive inertial term 1/iMx� 3/if, associated
with rigid body motion. Although small, this will tend to

mask the resonances below 1 kHz—as observed in the meas-

urements by Askenfelt4, which are otherwise in good quanti-

tative agreement with the above predictions, though the

heights of specific resonances clearly depend on assumed Q-

values.

The above model assumes uniform hair ribbon proper-

ties, with longitudinal forces applied to the first layer of

stretched bow hairs shared equally across the total thickness

of the ribbon. In practice, this may not be justified. Neverthe-

less, if the coupled stick modes are to have any direct influ-

ence on the sound of the violin, the above model strongly

suggests that coupling of the stick modes to the longitudinal

modes of the bow hair are likely to be more important than

coupling to the transverse modes.

III. BOUNCING BOW MODES

The above discussion has focused on the modes of the

freely supported bow, whereas the modes of most impor-

tance for the player are those of the hand-held bow. While

bowing, the bow is also subject to the additional constraint

introduced by the bow hair pressing down on the string.

Such constraints introduce a new set of low-frequency

bouncing modes, which have a major influence on the down-

ward force between bow hair and string at the start of any

bowed note.

There are two types of bouncing modes—those in which

the downward bow pressure maintains the bow contact with

the string and another in which the bow is allowed to bounce

on and off the string. An excellent overview of the impor-

tance of such modes when playing short repeated bowed

notes is given by Guettler in a contributed chapter in The
Science of String Instruments.10

A. On-string bouncing modes

Askenfelt3 identified and published the first measure-

ments of the on-string bouncing modes in the range 7–30Hz

depending on hair tension, stick moment of inertia I, and
string contact position x from the frog-end of the bow hair.

Bissinger5 also investigated such modes in addition to off-
the-string bouncing modes, which increased in repetition

rates from 5 to 11Hz over a few second interval, as the

bounce energy was dissipated. Subsequently, Askenfelt and

Guettler7 developed a rigid stick, quasi-static, model for the

on-string bounce frequency given by

FIG. 9. (Color online) The frequency dependence of the real part of the ad-

mittance for transverse and longitudinal hair waves at the midpoint of a

bow. The upper two plots are for transverse waves for bow tensions of 25

and 55N (solid curves); the admittance for rigid end supports is shown by

the dashed line. The lower plot is for longitudinal wave excitation at the

same two bow tensions. The dashed curve is the midpoint admittance for the

hair with rigid end supports. The dashed horizontal lines are half the corre-

sponding characteristic transmission line admittances.
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f ¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tx‘

Ið‘� xÞ

s
: (15)

In this section, finite element computations are described

which illustrate how such modes are influenced by the low-

est frequency stick vibrations. The Tourte-tapered bow is

assumed to be pivoted about the frog end of the tensioned

bow hair, with a rigid support at the point of contact with the

string and an in-plane restoring force Txy=‘ ‘� xð Þ at the

head end of the bow hair, where y is the displacement. This

assumes that sections of bow hair on either side of the bow-

ing point remain straight, which is a good approximation for

bounce frequencies much smaller than the transverse

resonances of the deflected length of bow hair.

Figure 10 shows the computed bounce frequencies of

the first two modes of the bow as a function of bowing point

distance x along the bow hair, for tensions of 40N (dashed

lines) and 60N (solid lines). The changes in the bow stick’s

modal shapes are also illustrated as a function of bowing

position, with open and closed vertical wedges indicating the

positions of the pivot and string-supported point along the

bow hair. The dotted line shows the bounce frequency pre-

dicted by the rigid stick model, Eq. (15) rising from zero at

the frog-end to infinity at the head-end of the bow hair.

Over the lower half of the bow, the computed lowest

bounce mode frequencies are virtually identical to those pre-

dicted by the quasi-static model. However, as the bowing

point moves toward the upper end of the bow, the bounce fre-

quency drops well below the rigid-stick predictions. A limit-

ing frequency is reached corresponding to the lowest

vibrational mode of the pivoted bow simply supported at the

point of attachment to the bow hair. Conversely, as the contact

point approaches the frog, the bounce frequency approaches

zero, corresponding to the inertial rotation of the bow about

the pivot point.

The higher-order pivoted stick modes are also strongly

perturbed by placing the bow on the string, as illustrated for

the second coupled stick and bow hair mode. With the bow-

ing point close to the frog, the head end of the bow is essen-

tially freely supported. This results in a bending wave

antinode at the end of the stick and a node around a quarter of

the way along its length. However, as the bowing point nears

the end of the bow, the head displacement is increasingly

constrained, forcing the node to move inward toward the mid-

dle of the stick, with two half-wavelengths along its length

and a corresponding large increase in mode frequency.

In practice, the string at the point of contact is not

ideally rigid, but will deflect slightly under the influence of

the deflected tension in the bow hair. Askenfelt2 estimated

that this would reduce the bounce frequency on the G-string

by typically �15%.

Figure 11 shows measurements of the first two bouncing

modes of a Bausch bow. The first two resonant frequencies

of the deflected lengths of hair are also plotted. Because

these frequencies are appreciably larger than the low fre-

quency bouncing frequencies, the straight bow hair approxi-

mation is justified for the lowest bouncing mode. It is

therefore unlikely that coupling to the dynamic hair modes

would significantly influence the measured bounce rates,

other than for the second stick mode, for a bow point close

to the frog.

FIG. 10. (Color online) The frequency of the first two bouncing modes of a

Tourte-tapered bow at bow tensions 60N (solid) and 40N (dashed), pivoted

(open triangles) about the frog-end of the bow hair, with the hair in contact

with the assumed rigid string (closed triangle), as a function of bowing posi-

tion along the length. Representative modal shapes are also shown for string

contact points at the ends of the bow and for intermediate positions. The dot-

ted line shows the quasi-static, rigid bow stick predictions.

FIG. 11. (Color online) Measurements of the first two on-string bouncing

mode frequencies, for a bow by Bausch pivoted about the frog, as a function

of the distance of a rigid support from the frog end, for a typical playing ten-

sion of around 50–60N.
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B. Off the string modes

For large impact velocities, the bow will hit the string,

undergo a half-period son bouncing cycle on the string, then

be thrown off, reversing the initial angular momentum at

impact. Under the influence of a restoring couple C from

gravity and the player’s fingers, the bow will return to the

string after a time soff, with a net bounce rate given by

fon�off ¼ 1½son þ soff � (16)

¼ 1= p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iðl� xÞ=Tx

p
þ 2I½dhd=dt�o=C

h i
: (17)

To obtain a regular sequence of repeated bounces, the player

can compensate for the increase in bounce rate from damp-

ing, by decreasing the downward couple on the bow or by

moving the point of contact further towards the upper end of

the bow, or a combination of both.10

Eventually, the losses will result in bouncing modes of

smaller amplitude than the static deflection of the bow hairs,

hstatic ¼ Cstatic ‘� xð Þ=T‘x.
The bow will then have insufficient energy and vibra-

tional amplitude for the bow to bounce off the string. The

hair will then remain on the string and execute decaying

vibrations of small amplitude at the on-string bounce rate.

In the intermediate regime, when the amplitude of stick

vibration is comparable with the static deflection, the bow

will spend longer on the string than half a period and will

leave the string with a velocity less than its maximum ampli-

tude. As the bouncing amplitude decreases, the bow will pro-

gressively spend less time off the string until the amplitude

reaches that of the static deflection, as observed by Bis-

singer.5 The bow will then continue to vibrate at the on-

string vibrational frequency.

In practice every bow has a “sweet point,” where the

player finds it easy to bounce the bow. This is usually slightly

above the midpoint of the bow, close to, but slightly above,

the center of percussion. This reduces the impact on the hand

holding the bow, allowing the player to maintain sufficient

control of the downward force to control the bounce at the

start of every note. As the contact point moves toward the

frog, the impact on the bowing hand increases and it becomes

progressively harder to control the bow and make use of the

natural bouncing modes. The bow then has to be bounced on

and off the string by vertical motions of the hand holding the

bow, with the fingers holding the bow having to control the

low frequency bouncing modes excited every time the bow

hits the string. Such low frequency vibrations result in rela-

tively large oscillations of the downward pressure of the hair

on the string, as demonstrated by Guettler.9

A player will identify the quality of a bow, at least in

part, with the ease with which all such bouncing modes can

be controlled. In the lower part of the bow, the quality will

be almost entirely dependent on its inertial properties and

the playing tension, while in the upper half the quality will

be increasingly dominated by the frequency of the 30–40 Hz

resonances of the pivoted stick resting on a rigid end

support.

IV. SUMMARY

Finite element, analytical models and measurements on

real and experimental bows have been used to investigate

the dynamical properties of bows with and without attached

bow hair. Computations on a Tourte-tapered bow stick with

attached frog and bow head illustrate relatively strong cou-

pling between the bending waves of the stick and its tor-

sional and longitudinal vibrations. The computations

identify both modal frequencies and effective masses at the

hair-supporting end of the bow. These masses are used to

obtain the admittance of the freely suspended bow and the

admittance at the midpoint of the bow hairs, in both trans-

verse and longitudinal directions.

Measurements with an experimental bow, with the bow

hairs replaced by a flexible guitar string, demonstrate the

strong coupling between the lowest stick modes and those of

the stretched bow hairs. However, no significant change in

the acoustically radiated sound was observed when the bow

was pressed firmly down on the bridge. This suggests that

any direct coupling of the bow vibrations, via the stretched

bow hair and bridge to the radiating surfaces of the instru-

ment is very small.

The bouncing modes of the pivoted bow resting on the

string have also been computed and investigated experimen-

tally. Such computations demonstrate how the bounce rate in

the upper half of the bow is strongly influenced by the lowest

frequency vibrational modes of the bow stick, refining an

earlier quasi-static model for bounce rates derived by Guet-

tler and Askenfelt.7–9

This investigation has revealed a rich menagerie of bow

vibrations. However, there remains little evidence that any

of the stick modes excited by bowing the string will interact

sufficiently strongly with the vibrations of the body to make

a significant contribution to the radiated sound, other than

via their possible influence on the slip-stick excitation of

Helmholtz kinks circulating around the bowed string.
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(Notice of Anthony Stadivari: The Celebrated Violin Maker) (Vuillaume,

Paris, 1856), translated by J. Bishop (1864), http://www.archive.org/

details/noticeofanthonys00feti (Last viewed 2/15/2012).
17S. Ramo, J. R. Whinnery, and T. van Duzer, Fields and Waves
in Communication Electronics (Wiley, New York, 1965), Table I.23,

p. 46.

J. Acoust. Soc. Am., Vol. 131, No. 5, May 2012 Colin E. Gough: Violin bow vibrations 4163

For personal use only! Commercial or reproduction use requires the permission of the publisher:  http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp


	s1
	s2
	s2A
	s2B
	cor1
	E1
	E2
	E3
	F1
	F2
	T1
	F3
	s2C
	E4
	E5
	E6
	T2
	s2D
	s2D1
	F4
	F5
	s2E
	F6
	s2F
	F7
	F8
	E7
	E8
	E9
	E10
	E11
	E12
	E13
	E14
	s3
	s3A
	F9
	E15
	F10
	F11
	s3B
	E16
	E17
	s4
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17

